Bulletin of Botanical Research ›› 2022, Vol. 42 ›› Issue (6): 1033-1043.doi: 10.7525/j.issn.1673-5102.2022.06.013
• Molecular biology • Previous Articles Next Articles
Denggao LI, Rui LIN, Qinghui MU, Na ZHOU, Yanru ZHANG, Wei BAI()
Received:
2022-05-22
Online:
2022-11-20
Published:
2022-11-22
Contact:
Wei BAI
E-mail:baiwei@imau.edu.cn
About author:
LI Denggao(1990—),male,doctor,mainly engaged in research of molecular biology of plant stress resistance.
Supported by:
CLC Number:
Denggao LI, Rui LIN, Qinghui MU, Na ZHOU, Yanru ZHANG, Wei BAI. Identification and Analysis of the Potato StCRKs Gene Family and Expression Patterns in Response to Stress Signals[J]. Bulletin of Botanical Research, 2022, 42(6): 1033-1043.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2022.06.013
Table 1
18 StCRKs gene information and primers
基因名称 Gene name | 序列 Sequence ID | 染色体 Locus | 基因长度 Genomic /bp | CDS长度CDS /bp | qRT-PCR引物(5′→3′) Primers of qRT-PCR(5′→3′) |
---|---|---|---|---|---|
StCRK9 | Soltu.DM.01G003430.1 | Chr1 | 4 789 | 1 695 | GACGACAAAGGGTACATTGTTC AACAATCAGCGAGAACATAAGC |
StCRK10 | Soltu.DM.01G003440.1 | Chr1 | 5 831 | 1 938 | AAGTGAGAGCTAGAGGATATGG CCAACAATCGGCGAGAACAT |
StCRK11 | Soltu.DM.01G003450.1 | Chr1 | 2 555 | 1 863 | TAGTTTCCAATGTGTGGGAGC TAAGTTGGCAGTCGAAGCAG |
StCRK12 | Soltu.DM.01G003460.1 | Chr1 | 2 252 | 1 404 | ACTTTCAATGCGGGATAGTGG GCGAGTACATCTCGCAAGG |
StCRK13 | Soltu.DM.01G003470.1 | Chr1 | 2 490 | 1 389 | ACATAAGCACTGTCATTGCTGG ACATGTAACACTCTCGCAACC |
StCRK14 | Soltu.DM.01G003480.1 | Chr1 | 2 536 | 1 869 | GATACAGTCAGCATAGTTTCCG GCTTGAGTGCACAAAAGTCC |
StCRK15 | Soltu.DM.01G003490.1 | Chr1 | 6 864 | 1 965 | CAACATTACGGCCATCTATGTC TACTTCTCTCGAGGGTTGTG |
StCRK16 | Soltu.DM.01G003500.1 | Chr1 | 3 295 | 1 743 | AGAGTACTTAGCACACGGTC GTTGGGATTTCTTGAGTGCAC |
StCRK17 | Soltu.DM.01G003510.1 | Chr1 | 4 486 | 1 938 | TCGCGAGAGTTTTGCATGTG GAGAACACCATGGAACTGCAT |
StCRK18 | Soltu.DM.02G019570.1 | Chr2 | 3 380 | 1 686 | GTAGCAGTAAAGAGATTGGCTG TGATGCGAAGTCTAGAATCCTC |
StCRK19 | Soltu.DM.02G019620.1 | Chr2 | 3 915 | 2 022 | CATGGCAAGGCTATTTACATTG TGGGGTCAATCAAATTTGCAGC |
StCRK20 | Soltu.DM.02G019650.1 | Chr2 | 3 850 | 1 938 | AACTCAAGGCAGCACAAACAG GCCTCATTTCGTGATGAACC |
StCRK21 | Soltu.DM.02G019660.1 | Chr2 | 9 799 | 2 172 | TTCAGGCCAAGAGAGACTTC TTTCACTGAAAATTGCCCCTGC |
StCRK22 | Soltu.DM.02G019670.1 | Chr2 | 5 196 | 1 677 | AGGGCCAGCATTCTATATGC TGCCTCATTTCGTGATGAACC |
StCRK23 | Soltu.DM.02G019690.1 | Chr2 | 7 277 | 2 067 | TGAGTTTTGCTTGGTTAAGCTGG TGCCATGGTTGGTCTATCAG |
StCRK24 | Soltu.DM.11G001100.1 | Chr11 | 4 079 | 1 929 | GCACTAAGTTTGCTGGTACC CTTGGTGTTCTTGATTCTGTGC |
StCRK25 | Soltu.DM.11G001180.1 | Chr11 | 4 053 | 1 920 | TGAAATAATCAGTGGACGGAGG CATGCTTGGCCTAAGATTTGG |
StCRK26 | Soltu.DM.12G006670.1 | Chr12 | 3 276 | 1 749 | AGGCTATCAAGAAGGTCAAGTC ACGTTGCTTGTTTCTTCGTATC |
Table 2
StCRKs family structure and protein physical and chemical information
蛋白名称 Protein name | 氨基酸总数量 Amino acid | 等电点 Isoelectric point | 分子质量 Molecular weight /kDa | 消光系数 Extinction coefficients | 不稳定系数 Instability index | 亲水系数 Hydropathicity |
---|---|---|---|---|---|---|
StCRK9 | 564 | 7.82 | 62.26 | 57 270 | 31.97 | 0.002 |
StCRK10 | 645 | 8.56 | 71.37 | 68 145 | 33.58 | -0.116 |
StCRK11 | 620 | 8.20 | 68.97 | 67 810 | 35.73 | -0.133 |
StCRK12 | 467 | 7.93 | 51.76 | 53 455 | 37.46 | -0.332 |
StCRK13 | 462 | 8.93 | 51.46 | 52 870 | 36.36 | -0.129 |
StCRK14 | 622 | 8.38 | 69.16 | 61 155 | 31.01 | -0.134 |
StCRK15 | 654 | 8.71 | 72.94 | 73 200 | 39.24 | -0.154 |
StCRK16 | 580 | 8.50 | 64.16 | 69 635 | 35.85 | -0.097 |
StCRK17 | 645 | 7.82 | 71.43 | 68 270 | 33.70 | -0.140 |
StCRK18 | 561 | 8.55 | 62.77 | 46 730 | 43.34 | -0.094 |
StCRK19 | 673 | 5.95 | 75.43 | 67 240 | 53.34 | -0.161 |
StCRK20 | 645 | 6.15 | 71.76 | 55 655 | 42.58 | -0.195 |
StCRK21 | 723 | 5.88 | 80.18 | 67 045 | 34.84 | -0.252 |
StCRK22 | 558 | 6.44 | 62.13 | 44 975 | 45.53 | -0.191 |
StCRK23 | 688 | 5.97 | 76.55 | 64 260 | 40.15 | -0.164 |
StCRK24 | 642 | 8.37 | 71.15 | 69 635 | 42.51 | -0.191 |
StCRK25 | 639 | 8.79 | 71.05 | 76 750 | 35.97 | -0.205 |
StCRK26 | 582 | 7.19 | 66.20 | 53 705 | 45.87 | -0.196 |
1 | PANDEY S.Plant receptor-like kinase signaling through heterotrimeric G-proteins[J].Journal of Experimental Botany,2020,71(5):1742-1751. |
2 | LIANG X X, ZHOU J M.Receptor-like cytoplasmic kinases:central players in plant receptor kinase-mediated signaling[J].Annual Review of Plant Biology,2018,69:267-299. |
3 | SHIU S H, BLEECKER A B.Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(19):10763-10768. |
4 | SHIU S H, BLEECKER A B.Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis [J].Plant Physiology,2003,132(2):530-543. |
5 | CHEN Z X.A superfamily of proteins with novel cysteine-rich repeats[J].Plant Physiology,2001,126(2):473-476. |
6 | BOURDAIS G, BURDIAK P, GAUTHIER A,et al.Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress[J].PLoS Genetics,2015,11(7):e1005373. |
7 | HUNTER K, KIMURA S, ROKKA A,et al.CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1[J].Plant Physiology,2019,180(4):2004-2021. |
8 | CHEN D H, WU J, ZHAO M,et al.A novel wheat cysteine-rich receptor-like kinase gene CRK41 is involved in the regulation of seed germination under osmotic stress in Arabidopsis thaliana [J].Journal of Plant Biology,2017,60(6):571-581. |
9 | LI X Y, ZHAO J, SUN Y H,et al. Arabidopsis thaliana CRK41 negatively regulates salt tolerance via H2O2 and ABA cross-linked networks[J].Environmental and Experimental Botany,2020,179:104210. |
10 | LU K, LIANG S, WU Z,et al.Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase,CRK5,enhances abscisic acid sensitivity and confers drought tolerance[J].Journal of Experimental Botany,2016,67(17):5009-5027. |
11 | IDÄNHEIMO N, GAUTHIER A, SALOJÄRVI J,et al.The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress[J].Biochemical and Biophysical Research Communications,2014,445(2):457-462. |
12 | WRZACZEK M, BROSCHÉ M, SALOJÄRVI J,et al.Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis [J].BMC Plant Biology,2010,10:95. |
13 | YADETA K A, ELMORE J M, CREER A Y,et al.A cysteine-rich protein kinase associates with a membrane immune complex and the cysteine residues are required for cell death[J].Plant Physiology,2017,173(1):771-787. |
14 | CHEN K G, DU L Q, CHEN Z X.Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis [J].Plant Molecular Biology,2003,53(1/2):61-74. |
15 | YEH Y H, CHANG Y H, HUANG P Y,et al.Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J].Frontiers in Plant Science,2015,6:322. |
16 | ACHARYA B R, RAINA S, MAQBOOL S B,et al.Overexpression of CRK13,an Arabidopsis cysteine-rich receptor-like kinase,results in enhanced resistance to Pseudomonas syringae [J].The Plant Journal,2007,50(3):488-499. |
17 | RAYAPURAM C, JENSEN M K, MAISER F,et al.Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley[J].Molecular Plant Pathology,2012,13(2):135-147. |
18 | LI T G, ZHANG D D, ZHOU L,et al.Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers Verticillium wilt resistance in Gossypium barbadense [J].Frontiers in Plant Science,2018,9:1266. |
19 | GU J, SUN J W, LIU N,et al.A novel cysteine-rich receptor-like kinase gene,TaCRK2,contributes to leaf rust resistance in wheat[J].Molecular Plant Pathology,2020,21(5):732-746. |
20 | SAINTENAC C, CAMBON F, AOUINI L,et al.A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch[J].Nature Communications,2021,12(1):433. |
21 | WANG J H, WANG J J, LI J,et al.The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1[J].The Plant Journal,2021,108(5):1241-1255. |
22 | GUO F L, WU T C, SHEN F D,et al.The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against Rhizoctonia cerealis in wheat[J].Journal of Experimental Botany,2021,72(20):6904-6919. |
23 | PELAGIO-FLORES R, MUÑOZ-PARRA E, BARRERA-ORTIZ S,et al.The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses[J].Planta,2019,251(1):2. |
24 | 孙莹,林艺灵,赵鹏程,等.龙眼类受体蛋白激酶CRK家族全基因组鉴定及表达调控分析[J].热带作物学报,2019,40(10):1924-1937. |
SUN Y, LIN Y L, ZHAO P C,et al.Genome-wide identification and regulation of expression analysis of cysteine-rich receptor-like kinase in longan[J].Chinese Journal of Tropical Crops,2019,40(10):1924-1937. | |
25 | 张中起,王娇,靳炜,等.陆地棉CRK基因家族的鉴定及其表达分析[J].中国农业科学,2018,51(13):2442-2461. |
ZHANG Z Q, WANG J, JIN W, et al.Identification and expression analysis of CRK gene family in upland cotton[J].Scientia Agricultura Sinica,2018,51(13):2442-2461. | |
26 | ZUO C W, LIU H, LÜ Q Q,et al.Genome-wide analysis of the apple(Malus domestica) cysteine-rich receptor-like kinase(CRK) family:annotation,genomic organization,and expression profiles in response to fungal infection[J].Plant Molecular Biology Reporter,2020,38(1):14-24. |
27 | 刘河,朵虎,赵丹,等.梨CRK家族基因及其腐烂病菌侵染响应成员的鉴定[J].园艺学报,2020,47(5):963-973. |
LIU H,DUO H, ZHAO D,et al.Identification of CRK gene family in pear and its members in response to signals of Valsa pyri[J].Acta Horticulturae Sinica,2020,47(5):963-973. | |
28 | HUSSAIN A, ASIF N, PIRZADA A R,et al.Genome wide study of cysteine rich receptor like proteins in Gossypium sp.[J].Scientific Reports,2022,12(1):4885. |
29 | 刘锐涛,张颖,樊秀彩,等.植物类受体激酶 CRK 参与逆境胁迫应答的研究进展[J/OL].[2022-08-05].. |
LIU R T, ZHANG Y, FAN X C,et al.Progress on the function of plant cysteine-rich receptor-like kinase in response to biotic and abiotic stresses[J/OL].[2022-08-05].. | |
30 | 张卫娜,范艳玲,康益晨,等.对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J].作物学报,2020,46(5):680-689. |
ZHANG W N, FAN Y L, KANG Y C,et al.Genome wide identification and expression analysis of CRK gene family in response to fungal pathogen signals in potato[J].Acta Agronomica Sinica,2020,46(5):680-689. | |
31 | 孙莹.马铃薯StCRK1/2互作蛋白的筛选鉴定[D].呼和浩特:内蒙古农业大学,2021. |
SUN Y.Screening and identification of StCRK1/2 interacting proteins in Solanum tuberosum [D].Hohhot:Inner Mongolia Agricultural University,2021. | |
32 | TIAN L X, YANG J Q, HOU W J,et al.Molecular cloning and characterization of a P-glycoprotein from the diamondback moth,Plutella xylostella(Lepidoptera:Plutellidae)[J].International Journal of Molecular Sciences,2013,14(11):22891-22905. |
33 | MIYAKAWA T, MIYAZONO K I, SAWANO Y,et al.Crystal structure of ginkbilobin-2 with homology to the extracellular domain of plant cysteine-rich receptor-like kinases[J].Proteins,2009,77(1):247-251. |
34 | 田双慧,程赫,张洋,等.毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J].植物研究,2021,41(06):993-1005. |
TIAN S H, CHENG H, ZHANG Y,et al.Genome-wide Identification and Expressional Analysis of Carotenoid Cleavage Dioxygenases(CCD) Gene Family in Populus trichocarpa under Drought and Salt Stress[J].Bulletin of Botanical Research,2021,41(06):993-1005. | |
35 | 李冬梅,韩小强,于俊华,等.外源脱落酸缓解低温胁迫研究进展[J].现代农药,2016,15(4):1-5. |
LI D M, HAN X Q, YU J H,et al.Research advances in chilling resistance of exogenous abscisic acid[J].Modern Agrochemicals,2016,15(4):1-5. | |
36 | 熊炳平,雷泞菲,刘金渠,等.低温胁迫下常春藤对外源脱落酸的生理响应[J].北方园艺,2022(3):71-78. |
XIONG B P, LEI N F, LIU J Q,et al.Physiological response of ivy to exogenous abscisic acid under low temperature stress[J].Northern Horticulture,2022(3):71-78. |
[1] | Luhua ZHOU, Junyi FANG, Zimo XIONG, Weifeng WU, Jiarui LIU, Qiao LU, Hongqing LING, Danyu KONG. Evaluation on Waterlogging Tolerance of Different Tomato Germplasm [J]. Bulletin of Botanical Research, 2023, 43(5): 657-666. |
[2] | Dezong SUI, Baosong WANG. Comparative Proteomics on Leaves of Triadica sebifera Clones under Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(5): 679-689. |
[3] | Yu SONG, Wenhao LIN, Yibo JING, Yi DONG, Shumei JIN. Cloning and Expression Analysis of Catalase Gene in Lilium pumilum [J]. Bulletin of Botanical Research, 2023, 43(5): 756-767. |
[4] | Chaoran SHAN, Xiaohu CHEN, Yunfei DING, Wei ZHAO, Han LU, Shangzhu GAO, Fenghui QI, Yaguang ZHAN, Fansuo ZENG. Functional Analysis of FmCCoAOMT Gene in Fraxinus mandshurica During Lignin Synthesis and Abiotic Stress [J]. Bulletin of Botanical Research, 2023, 43(5): 768-778. |
[5] | Xinyu NI, Junying HE, Mengjiao YAN, Chao DU. Application Progress of RNA-Seq Technology in Rare and Endangered Plants [J]. Bulletin of Botanical Research, 2023, 43(4): 481-492. |
[6] | Shuyao ZHUANG, Hengbo XU, Xiaoyu HU, Shang DAI, Yanni ZHANG. Effects of Saline-alkali Stress on Growth and Physiological Characteristics of Color Leaf Heuchera micrantha ‘Silver Fan’ Seedlings [J]. Bulletin of Botanical Research, 2023, 43(4): 520-530. |
[7] | Lei XU, Xiao XU, Qinsong LIU. Effects of Exogenous Salicylic Acid on Antioxidant System and Gene Expression of Davidia involucrata Seedlings under Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(4): 572-581. |
[8] | Yu SUN, Yiteng ZHANG, Huihui CHENG. The Function of Salt and Alkaline Tolerance of WRKY42 Gene in Amorpha fruticosa [J]. Bulletin of Botanical Research, 2023, 43(4): 612-621. |
[9] | Hanlin ZHU, Heng ZHAO, Bowen ZHAI, Maoyu ZHANG, Yujie FU. Ultrasonic-Assisted Enzymatic Extraction of Polysaccharides from Schisandra chinensis and the Effects on Anti-Oxidative Stress in Cells [J]. Bulletin of Botanical Research, 2023, 43(4): 631-640. |
[10] | Li LI, Xin WANG, Yuejing ZHANG, Lingyun JIA, Hailong PANG, Hanqing FENG. Effects of Abiotic Stresses on the Intracellular and Extracellular ATP Levels of Tobacco Suspension Cells [J]. Bulletin of Botanical Research, 2023, 43(2): 179-185. |
[11] | Shixian LIAO, Yuting WANG, Liben DONG, Yongmei GU, Fenglin JIA, Tingbo JIANG, Boru ZHOU. Function Analysis of the Transcription Factor PsnbZIP1 of Populus simonii×P. nigra in Response to Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 288-299. |
[12] | Senyao LIU, Fenglin JIA, Qing GUO, Gaofeng FAN, Boru ZHOU, Tingbo JIANG. Response Analysis of Transcription Factor PsnbHLH162 Gene in Populus simonii × P. nigra under Salt Stress and Low Temperature Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 300-310. |
[13] | Jianxin LIU, Ruirui LIU, Xiuli LIU, Xiaobin OU, Haiyan JIA, Ting BU, Na LI. Effects of Exogenous Hydrogen Sulfide on Contents of Organic Acids and Hormones in Leaves of Avena nuda under Saline-Alkali Stress [J]. Bulletin of Botanical Research, 2023, 43(1): 76-89. |
[14] | Jing WU, Yuanyuan WANG, Danni WANG, Baichao LIU, Zhongyuan LIU. Cloning and Osmotic Stress Response Analysis of ThGRF2 from Tamarix hispida [J]. Bulletin of Botanical Research, 2022, 42(6): 1044-1051. |
[15] | Liran YUE, Yingjie LIU, Chenxu LIU, Yunwei ZHOU. Cloning and Functional Analysis of miR398a from Chrysanthemum× grandiflora in Response to Salt Stress [J]. Bulletin of Botanical Research, 2022, 42(6): 986-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||