1 |
MOORE B W, PEREZ V J.Specific acidic proteins of the nervous system[J].Physiological and Biochemical Aspects of Nervous Integration,1967,34:343-359.
|
2 |
VISCONTI S, D’AMBROSIO C, FIORILLO A,et al.Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants[J].Plant Science,2019,289:110215.
|
3 |
ZHANG Z X, ZHAO H, HUANG F L,et al.The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice(Oryza sativa L.)[J].The Plant Journal,2019,99(2):344-358.
|
4 |
冯倩,陈永富,姚银安,等.烟草异源过表达胡杨PeGRF6/8a对不同逆境的响应[J].应用与环境生物学报,2019,25(3):665-671.
|
|
FENG Q, CHEN Y F, YAO Y A,et al.Response of heterologous overexpression of Populus euphratica PeGRF6/8a in tobacco under different stresses[J].Chinese Journal of Applied and Environmental Biology,2019,25(3):665-671.
|
5 |
CAI J S, CAI W W, HUANG X Y,et al.Ca14-3-3 interacts with CaWRKY58 to positively modulate pepper response to low-phosphorus starvation[J].Frontiers in Plant Science,2021,11:607878.
|
6 |
LIU Q, YANG J Y, ZHANG S H,et al. OsGF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance in Rice[J].Molecular Plant-Microbe Interactions,2015,29(1):46-56.
|
7 |
肖奇英.植物14-3-3基因家族的进化和功能分析[D].北京:中国科学院植物研究所,2008.
|
|
XIAO Q Y.Analysis of evolution and biological function of plant l 4-3 13 gene family[D].Beijing:Chinese Academy of Sciences Institute of Botany,2008.
|
8 |
ZHANG Y, ZHAO H Y, ZHOU S Y,et al.Expression of TaGF14b,a 14-3-3 adaptor protein gene from wheat,enhances drought and salt tolerance in transgenic tobacco[J].Planta,2018,248(1):117-137.
|
9 |
LI B J, XIAO G H, LUO K S,et al.Overexpression of PvGF14c from Phyllostachys violascens delays flowering time in transgenic Arabidopsis [J].Front Plant Science,2018,9:105.
|
10 |
李树斌,周丽丽,闫新阳,等.杉木CL14-3-3-e基因克隆及其在干旱胁迫下表达分析[J].分子植物育种,2020,18(16):5306-5314.
|
|
LI S B, ZHOU L L, YAN X Y,et al.Gene cloning and its expression analysis under drought-stress of CL14-3-3-e of Chinese Fir[J].Molecular Plant Breeding,2020,18(16):5306-5314.
|
11 |
张悦.刚毛柽柳ThSZF3基因耐盐功能分析[D].哈尔滨:东北林业大学,2019.
|
|
ZHANG Y.Analysis of salt tolerance function of ThSZF3 from Tamarix hispida [D].Harbin:Northeast Forestry University,2019.
|
12 |
唐绯绯,赵玉琳,王培龙,等.刚毛柽柳ThP5CR基因的克隆及抗逆功能分析[J].林业科学,2017,53(7):1-9.
|
|
TANG F F, ZHAO Y L, WANG P L,et al.Cloning and stress tolerance analysis of ThP5CR from Tamarix hispida [J].Scientia Silvae Sinicae,2017,53(7):1-9.
|
13 |
LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J].Methods,2001,25(4):402-408.
|
14 |
WANG Y Y, LIU Z Y, WANG P L,et al.A 2-Cys peroxiredoxin gene from Tamarix hispida improved salt stress tolerance in plants[J].BMC Plant Biology,2020,20(1):360.
|
15 |
徐红云.拟南芥Trihelix转录因子AST1调控植物抗旱、耐盐的机制研究[D].东北林业大学,2017.
|
|
XU H Y.The mechanism of Arabidopsis Trihelix transcription factor AST1 in drought or salt stress response regulation [D].Harbin:Northeast Forestry University,2017.
|
16 |
SARIC-KRSMANOVIC M, BOZIC D, RADIVOJEVIC L,et al.Impact of field dodder(Cuscuta campestris Yunk.) on chlorophyll fluorescence and chlorophyll content of alfalfa and sugar beet plants[J].Russian Journal of Plant Physiology,2018,65(5):726-731.
|
17 |
SUN X L, LUO X, SUN M Z,et al.A Glycine Soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana [J].Plant and Cell Physiology,2014,55(1):99-118.
|
18 |
强晓敏,高南,冯晓宇,等.超量表达GRF9基因促进番茄生长并增强其对磷的吸收利用能力[J].土壤,2013,45(3):483-488.
|
|
QIANG X M, GAO N, FENG X Y,et al.GRF9 over-expressing improves tomato growth and phosphorus use efficiency[J].Soils,2013,45(3):483-488.
|
19 |
AKSAMIT A, KOROBCZAK A, SKALA J,et al.The 14-3-3 gene expression specificity in response to stress is promoter-dependent[J].Plant and Cell Physiology,2005,46(10):1635-1645.
|
20 |
HOSSAIN M A, BHATTACHARJEE S, ARMIN S M,et al.Hydrogen peroxide priming modulates abiotic oxidative stress tolerance:insights from ROS detoxification and scavenging[J].Frontiers in Plant Science,2015,6:420.
|
21 |
JAIN G, GOULD K S.Are betalain pigments the functional homologues of anthocyanins in plants?[J].Environmental and Experimental Botany,2015,119:48-53.
|
22 |
许佳瑶,陈俏丽,张瑞芝,等.松材线虫Bx-ubc-3基因克隆及泛素通路鉴定[J].森林工程,2019,35(5): 9-15.
|
|
XU J Y, CHEN Q L, ZHANG R Z,et al.Genetic cloning of bx-ubc-3 and identification of ubiquitin pathway from Bursaphelenchus xylophilus full text replacement[J].Forest Engineering,2019,35(5): 9-15.
|
23 |
DENISON FIONA C, PAUL ANNA-LISA, Zupanska AGATA K,et al.14-3-3 proteins in plant physiology[J].Seminars in Cell and Developmental Biology,2011,48:720-727.
|
24 |
OBIDIEGWU J E, BRYAN G J, JONES H G,et al.Coping with drought:stress and adaptive responses in potato and perspectives for improvement[J].Frontiers in Plant Science,2015,6:542.
|
25 |
CHEN Y X, ZHOU X J, CHANG S,et al.Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice[J].Biochemical and Biophysical Research Communications,2017,493(4):1450-1456.
|
26 |
YAN J Q, HE C X, WANG J,et al.Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions[J].Plant and Cell Physiology,2004,45(8):1007-1014.
|
27 |
SHANKO A V, MESENKO M M, KLYCHNIKOV O I,et al.Proton pumping in growing part of maize root:its correlation with 14-3-3 protein content and changes in response to osmotic stress[J].Biochemistry,2003,68(12):1320-1326.
|
28 |
HE Y C, WU J J, LÜ B,et al.Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress[J].Journal of Experimental Botany,2015,66(8):2271-2281.
|
29 |
SUN X, LUO X, SUN M,et al.A Glycine soja14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana [J].Plant Cell Physiol,2014,55(1):99-118.
|