植物研究 ›› 2024, Vol. 44 ›› Issue (4): 554-564.doi: 10.7525/j.issn.1673-5102.2024.04.008
王雪来1, 刘晓婷1, 王力冉2, 李诗童2, 张太进2, 张嘉峰3, 许经华3, 曲冠证1, 赵曦阳1,2()
收稿日期:
2023-10-31
出版日期:
2024-07-20
发布日期:
2024-07-09
通讯作者:
赵曦阳
E-mail:zhaoxyphd@163.com
作者简介:
王雪来(1999—),女,硕士研究生,主要从事林木遗传改良研究。
基金资助:
Xuelai WANG1, Xiaoting LIU1, Liran WANG2, Shitong LI2, Taijin ZHANG2, Jiafeng ZHANG3, Jinghua XU3, Guanzheng QU1, Xiyang ZHAO1,2()
Received:
2023-10-31
Online:
2024-07-20
Published:
2024-07-09
Contact:
Xiyang ZHAO
E-mail:zhaoxyphd@163.com
摘要:
红松(Pinus koraiensis)是东北地区重要的果材兼用树种,但由于生长周期长,遗传改良进展缓慢,为评价和筛选优质红松种质资源,以吉林省永吉县西阳林木种子园内36个20年生红松半同胞家系为材料,对其生长性状和木材性状进行测定。方差分析结果表明,各性状在家系间差异均达显著水平(P<0.01),各性状表型变异系数为5.89%~45.21%;除通直度(0.46)外,其他性状的家系遗传力均超过0.5,属于高遗传力。相关分析结果表明,树高、胸径等生长性状间均达极显著正相关水平(r>0.663),木材性状间半纤维素、纤维素和综纤维素含量间达显著相关水平,而生长性状与木材性状间仅纤维素含量、综纤维素含量与部分生长性状呈显著负相关。主成分分析结果表明,14个性状构成5个主成分,累计贡献率为79.24%。利用综合评价法对36个半同胞家系进行评价,以10%的入选率,依据生长性状,初步筛选3个优良家系(家系PK61、PK29和PK22),各生长性状遗传增益为6.41%~33.91%;依据木材性状,初步筛选3个优良家系(家系PK16、PK78和PK10),各木材性状遗传增益为1.08%~6.72%;结合生长和木材性状初步筛选出3个优良家系(家系PK61、PK29和PK44),各指标遗传增益为0.27%~37.28%。该研究选出的优良家系可为红松良种选用提供基础。
中图分类号:
王雪来, 刘晓婷, 王力冉, 李诗童, 张太进, 张嘉峰, 许经华, 曲冠证, 赵曦阳. 生长和木材性状耦合评价红松半同胞家系[J]. 植物研究, 2024, 44(4): 554-564.
Xuelai WANG, Xiaoting LIU, Liran WANG, Shitong LI, Taijin ZHANG, Jiafeng ZHANG, Jinghua XU, Guanzheng QU, Xiyang ZHAO. Coupling Evaluation of Growth and Wood Properties of Pinus koraiensis Half-sib Families[J]. Bulletin of Botanical Research, 2024, 44(4): 554-564.
表2
不同家系各性状方差分析结果
性状 Trait | 变异来源 Variance source | 自由度 df | 均方 Mean square | F | P |
---|---|---|---|---|---|
树高H | 区组Block | 2 | 42.149 7 | 138.069 | <0.001 |
家系Families | 35 | 2.204 6 | 7.222 | <0.001 | |
区组×家系Blocks×Families | 70 | 1.684 7 | 5.519 | <0.001 | |
胸径DBH | 区组Block | 2 | 11.561 3 | 4.104 | 0.017 |
家系Families | 35 | 20.872 2 | 7.409 | <0.001 | |
区组×家系Blocks×Families | 70 | 13.948 5 | 4.951 | <0.001 | |
2 m径 D2 | 区组Block | 2 | 15.605 9 | 5.882 | 0.003 |
家系Families | 35 | 18.618 8 | 7.017 | <0.001 | |
区组×家系Blocks×Families | 70 | 12.904 2 | 4.864 | <0.001 | |
材积V | 区组Block | 2 | 0.001 2 | 10.464 | <0.001 |
家系Families | 35 | 0.000 9 | 7.465 | <0.001 | |
区组×家系Blocks×Families | 70 | 0.000 5 | 4.289 | <0.001 | |
分枝角BA | 区组Block | 2 | 770.799 0 | 11.596 | <0.001 |
家系Families | 35 | 257.327 5 | 3.871 | <0.001 | |
区组×家系Blocks×Families | 70 | 171.152 2 | 2.575 | <0.001 | |
通直度SS | 区组Block | 2 | 0.413 1 | 3.073 | 0.048 |
家系Families | 35 | 0.247 3 | 1.840 | 0.004 | |
区组×家系Blocks×Families | 70 | 0.139 8 | 1.040 | 0.401 | |
木材密度WD | 家系Families | 35 | 0.007 0 | 1.988 | 0.001 |
纤维长FL | 家系Families | 35 | 423 655.133 0 | 9.466 | <0.001 |
纤维宽FW | 家系Families | 35 | 162.764 0 | 6.155 | <0.001 |
纤维长宽比LWR | 家系Families | 35 | 809.903 0 | 5.827 | <0.001 |
半纤维素HEC | 家系Families | 35 | 7.225 0 | 3.680 | <0.001 |
纤维素CC | 家系Families | 35 | 30.968 0 | 5.712 | <0.001 |
综纤维素HOC | 家系Families | 35 | 25.187 0 | 3.993 | <0.001 |
木质素LC | 家系Families | 35 | 8.733 0 | 2.123 | <0.001 |
表3
36个半同胞家系各性状遗传变异系数
性状 Trait | 平均值 Average value | 变幅 Range | 标准差 Standard deviation | 表型变异系数 PCV/% | 家系遗传力 h2 |
---|---|---|---|---|---|
树高H/m | 5.97 | 5.07~6.76 | 0.94 | 15.69 | 0.86 |
胸径DBH/cm | 11.76 | 9.71~15.11 | 2.48 | 21.05 | 0.87 |
2 m径 D2/cm | 10.82 | 8.94~14.00 | 2.38 | 22.02 | 0.86 |
材积V/m3 | 0.03 | 0.02~0.06 | 0.02 | 45.21 | 0.87 |
通直度SS | 4.05 | 3.83~4.58 | 0.38 | 9.43 | 0.46 |
分枝角BA/(°) | 68.36 | 57.12~74.38 | 10.11 | 14.79 | 0.74 |
木材密度WD/(g·cm-3) | 0.54 | 0.47~0.61 | 0.06 | 11.98 | 0.50 |
纤维长FL/μm | 1 211.26 | 1 045.74~1 368.24 | 219.45 | 18.12 | 0.89 |
纤维宽FW/μm | 25.70 | 22.88~29.01 | 5.26 | 20.47 | 0.84 |
纤维长宽比LWR | 48.77 | 44.18~55.35 | 12.04 | 24.69 | 0.83 |
半纤维素HEC/% | 15.31 | 13.52~17.21 | 1.59 | 10.36 | 0.73 |
纤维素CC/% | 38.80 | 34.17~41.93 | 2.84 | 7.31 | 0.82 |
综纤维素HOC/% | 54.11 | 48.69~56.52 | 2.87 | 5.30 | 0.75 |
木质素LC/% | 36.30 | 33.80~38.46 | 2.14 | 5.89 | 0.53 |
表4
半同胞家系各性状相关系数
性状 Trait | 树高 H | 胸径 DBH | 2 m径 D2 | 材积 V | 通直度 SS | 分枝角 BA | 木材密度 WD | 纤维长 FL | 纤维宽 FW | 纤维长宽比 LWR | 半纤维素 HEC | 纤维素 CC | 综纤维素 HOC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
胸径DBH | 0.649** | ||||||||||||
2 m径 D2 | 0.663** | 0.985** | |||||||||||
材积V | 0.708** | 0.979** | 0.975** | ||||||||||
通直度SS | 0.202* | 0.127 | 0.149 | 0.142 | |||||||||
分枝角BA | -0.070 | -0.043 | -0.068 | -0.085 | 0.126 | ||||||||
木材密度WD | 0.070 | 0.053 | 0.046 | 0.025 | 0.107 | 0.058 | |||||||
纤维长FL | 0.135 | 0.110 | 0.112 | 0.140 | -0.004 | 0.002 | -0.101 | ||||||
纤维宽FW | 0.058 | 0.056 | 0.056 | 0.080 | -0.131 | -0.100 | -0.090 | 0.431** | |||||
纤维长宽LWR | 0.077 | 0.030 | 0.034 | 0.047 | 0.106 | 0.087 | -0.040 | 0.658** | -0.391** | ||||
半纤维素HEC | 0.080 | 0.051 | 0.061 | 0.067 | -0.007 | 0.027 | 0.016 | -0.111 | -0.052 | -0.076 | |||
纤维素CC | -0.186* | -0.216** | -0.214** | -0.206* | -0.090 | -0.078 | -0.059 | 0.086 | 0.054 | 0.051 | -0.347** | ||
综纤维素HOC | -0.152 | -0.198* | -0.192* | -0.180* | -0.098 | -0.067 | -0.053 | 0.034 | 0.030 | 0.015 | 0.179* | 0.861** | |
木质素LC | -0.065 | 0.117 | 0.109 | 0.122 | -0.072 | 0.052 | 0.066 | -0.052 | -0.040 | -0.026 | 0.343** | -0.095 | 0.086 |
表5
红松各性状主成分分析
主要成分因子 Principal component factor | 主成分Ⅰ Principal component Ⅰ | 主成分Ⅱ Principal component Ⅱ | 主成分Ⅲ Principal component Ⅲ | 主成分Ⅳ Principal component Ⅳ | 主成分Ⅴ Principal component Ⅴ |
---|---|---|---|---|---|
特征值 Eigenvalue | 4.123 | 2.601 | 1.909 | 1.312 | 1.149 |
贡献率 Contribution rate | 29.450 | 18.578 | 13.632 | 9.370 | 8.205 |
累计贡献率 Cumulative contribution rate | 29.405 | 48.028 | 61.660 | 71.030 | 79.235 |
树高H | 0.829 | 0.214 | -0.007 | -0.107 | 0.129 |
胸径DBH | 0.885 | 0.410 | 0.023 | 0.058 | -0.028 |
2 m径 D2 | 0.887 | 0.413 | 0.029 | 0.054 | -0.020 |
材积V | 0.894 | 0.409 | 0.029 | 0.050 | -0.016 |
通直度SS | 0.320 | -0.149 | 0.139 | -0.438 | 0.703 |
分枝角BA | 0.081 | -0.297 | 0.307 | 0.463 | 0.432 |
木材密度WD | 0.431 | -0.124 | 0.419 | -0.072 | -0.531 |
纤维长FL | -0.322 | 0.780 | 0.144 | 0.093 | 0.163 |
纤维宽FW | -0.102 | 0.439 | -0.665 | 0.504 | 0.109 |
纤维长宽比LWR | -0.308 | 0.338 | 0.733 | -0.357 | 0.072 |
半纤维素HEC | 0.142 | -0.315 | 0.425 | 0.513 | 0.248 |
纤维素CC | -0.538 | 0.727 | 0.026 | -0.123 | -0.015 |
综纤维素HOC | -0.501 | 0.615 | 0.238 | 0.125 | 0.107 |
木质素LC | -0.061 | 0.045 | 0.626 | 0.443 | -0.225 |
表6
各家系 Qi 值
家系 Families | Qi | 家系 Families | Qi | ||||
---|---|---|---|---|---|---|---|
生长性状 Growth traits | 木材性状 Wood traits | 生长与木材性状联合选择 Combined selection for growth and wood traits | 生长性状 Growth traits | 木材性状 Wood traits | 生长与木材性状联合选择 Combined selection for growth and wood traits | ||
PK1 | 1.39 | 1.65 | 2.16 | PK44 | 1.54 | 1.66 | 2.26 |
PK10 | 1.42 | 1.69 | 2.21 | PK45 | 1.52 | 1.64 | 2.24 |
PK12 | 1.44 | 1.68 | 2.22 | PK51 | 1.38 | 1.67 | 2.16 |
PK16 | 1.45 | 1.69 | 2.23 | PK61 | 1.61 | 1.67 | 2.32 |
PK17 | 1.36 | 1.69 | 2.17 | PK63 | 1.33 | 1.67 | 2.13 |
PK18 | 1.45 | 1.67 | 2.22 | PK64 | 1.47 | 1.65 | 2.21 |
PK22 | 1.54 | 1.65 | 2.26 | PK66 | 1.36 | 1.67 | 2.15 |
PK25 | 1.45 | 1.68 | 2.22 | PK68 | 1.41 | 1.65 | 2.17 |
PK27 | 1.46 | 1.66 | 2.21 | PK70 | 1.35 | 1.65 | 2.14 |
PK28 | 1.50 | 1.69 | 2.25 | PK71 | 1.47 | 1.66 | 2.22 |
PK29 | 1.58 | 1.65 | 2.29 | PK73 | 1.43 | 1.66 | 2.19 |
PK31 | 1.50 | 1.67 | 2.25 | PK74 | 1.41 | 1.66 | 2.18 |
PK32 | 1.43 | 1.66 | 2.20 | PK75 | 1.47 | 1.67 | 2.23 |
PK34 | 1.36 | 1.64 | 2.13 | PK76 | 1.39 | 1.66 | 2.17 |
PK35 | 1.50 | 1.65 | 2.23 | PK78 | 1.42 | 1.69 | 2.21 |
PK36 | 1.39 | 1.67 | 2.17 | PK81 | 1.42 | 1.65 | 2.18 |
PK37 | 1.48 | 1.63 | 2.20 | PK82 | 1.47 | 1.60 | 2.17 |
PK43 | 1.39 | 1.65 | 2.16 | PK84 | 1.34 | 1.68 | 2.16 |
1 | CAO J, LIU H Y, ZHAO B,et al.Species-specific and elevation-differentiated responses of tree growth to rapid warming in a mixed forest lead to a continuous growth enhancement in semi-humid northeast Asia[J].Forest Ecology and Management,2019,448:76-84. |
2 | LI Y, XU Y J, HAN R,et al.Widely targeted metabolomic profiling combined with transcriptome analysis provides new insights into lipid biosynthesis in seed kernels of Pinus koraiensis [J].International Journal of Molecular Sciences,2023,24(16):12887. |
3 | 孙白冰,陈晓波,张启昌,等.我国红松大径级用材林近自然培育探讨[J].世界林业研究,2021,34(1):84-89. |
SUN B B, CHEN X B, ZHAGN Q C,et al.Discussions on close-to-nature silviculture of Pinus koraiensis stand for large-diameter timber in China[J].World Forestry Research,2021,34(1):84-89. | |
4 | 潘晓丽,王凤娟,张娜,等.不同提取方法对红松籽油提取效果及功能性质的影响[J].北京林业大学学报,2021,43(1):127-135. |
PAN X L, WANG F J, ZHANG N,et al.Effects of different extraction methods on extraction effect and functional properties of Korean pine seed oil[J].Journal of Beijing Forestry University,2021,43(1):127-135. | |
5 | HOU D, ZHANG L, WANG J N,et al.Variation in cone,seed,and kernel nutritional components traits of Pinus koraiensis [J].Silvae Genetica,2021,70(1):205-216. |
6 | ZU Y G, WEI X X, YU J H,et al.Responses in the physiology and biochemistry of Korean pine(Pinus koraiensis) under supplementary UV-B radiation[J].Photosynthetica,2011,49(3):448-458. |
7 | 魏嘉彤,陈思琪,芦贤博,等.基于生长与木材性状的红松优良种源评价选择[J].北京林业大学学报,2022,44(3):12-23. |
WEI J T, CHEN S Q, LU X B,et al.Evaluation and selection of excellent provenances of Pinus koraiensis based on growth and wood properties[J].Journal of Beijing Forestry University,2022,44(3):12-23. | |
8 | LIU X T, LU Z M, WU J G,et al.Comparison of genetic impact on growth and wood traits between seedlings and clones from the same plus trees of Pinus koraiensis [J].Journal of Forestry Research,2023,34(2):469-480. |
9 | WEI J T, LI X, XU H Z,et al.Evaluation of the genetic diversity of Pinus koraiensis by EST-SSR and its management,utilization and protection[J].Forest Ecology and Management,2022,505:119882. |
10 | 韩丽冬,牟长城,张军辉.透光抚育对长白山阔叶红松林冠下红松光合作用的影响[J].东北林业大学学报,2016,44(4):38-40. |
HAN L D, MOU C C, ZHANG J H.Effect of crown thinning on photosynthesis of understory korean pine of broadleaved korean pine mixed rorests in Changbai Mountain[J].Journal of Northeast Forestry University,2016,44(4):38-40. | |
11 | 任毓辉,聂帅,彭春雪,等.红松胚性愈伤组织增殖的激素配比、糖源类型和增殖周期效应研究[J].植物研究,2022,42(4):704-712. |
REN Y H, NIE S, PENG C X,et al.Effects of hormone combinations,carbon source type and proliferation cycle on embryogenic callus proliferation of Pinus koraiensis [J].Bulletin of Botanical Research,2022,42(4):704-712. | |
12 | 张建瑛,殷东生.红松雌球果发育对枝叶营养生长和生物量积累的影响[J].生态学杂志,2019,38(6):1646-1652. |
ZHANG J Y, YIN D S.Effects of female cone development on the vegetative growth and biomass accumulation of shoots and needles of Pinus koraiensis [J].Chinese Journal of Ecology,2019,38(6):1646-1652. | |
13 | CHEN M M, FENG F J, SUI X,et al.Construction of a framework map for Pinus koraiensis Sieb.et Zucc.using SRAP,SSR and ISSR markers[J].Trees,2010,24:685-693. |
14 | LI W, WANG X R, LI Y.Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr.over a 12-year span[J].PLoS One,2011,6(8):e23544. |
15 | 姜国云,蒋路平,宋双林,等.红松半同胞家系遗传变异分析及果材兼用优良家系选择[J].植物研究,2018,38(5):775-784. |
JIANG G Y, JIANG L P, SONG S L,et al.Genetic variance analysis and excellent fruit-timber families selection of half-sib Pinus koraiensis [J].Bulletin of Botanical Research,2018,38(5):775-784. | |
16 | MCKENZIE S M, PARKER W C, PISARIC M F J,et al.Tree-ring growth varies with climate and stand density in a red pine plantation forest in the Great Lakes region of North America[J].Dendrochronologia,2023,79:126091. |
17 | 项伟波.日本落叶松生长和木材化学组分的QTL定位及遗传基础解析[D].北京:中国林业科学研究院,2020. |
XIANG W B.QTL mapping and genetic basis analysis of growth and wood chemical components of Japanese larch[D].Beijing:Chinese Academy of Forestry,2020. | |
18 | 赵曦阳.白杨杂交试验与杂种无性系多性状综合评价[D].北京:北京林业大学,2010. |
ZHAO X Y.Study on hybridization and evaluation of multiple characters of hybrid clones in Chinese white poplar[D].Beijing:Beijing Forestry University,2010. | |
19 | 张振,张含国,张磊.红松自由授粉子代家系生产力年度变异与家系选[J].植物研究,2016,36(2):305-309. |
ZHANG Z, ZHANG H G, ZHANG L.Age variations in productivity and family selection of open-pollinated families of korean pine(Pinus koraiensis)[J].Bulletin of Botanical Research,2016,36(2):305-309. | |
20 | 国家市场监督管理总局,中国国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法:第5部分:密度测定: [S].北京:中国标准出版社,2021. |
State Administration for Market Regulation,Administration Standardization of China. Test methods for physical and mechanical properties of small clear wood specimens: Part5:determination of density: [S].Beiiing:China Standards Press,2021. | |
21 | 朱莉,石江涛.红松应力木木材形成组织的化学组成特征分析[J].植物研究,2012,32(2):232-236. |
ZHU L, SHI H T.Chemical compound characteristic analysis of wood forming tissue from reaction wood of Pinus koraiensis [J].Bulletin of Botanical Research,2012,32(2):232-236. | |
22 | YIN S P, XIAO Z H, ZHAO G H,et al.Variation analyses of growth and wood properties of Larix olgensis clones in China[J].Journal of Forestry Research,2017,28(4):687-697. |
23 | LIANG D Y, DING C J, ZHAO G H,et al.Variation and selection analysis of Pinus koraiensis clones in northeast China[J].Journal of Forestry Research,2018,29(3):611-622. |
24 | ZHANG H, ZHANG Y H Y, ZHANG D W,et al.Progeny performance and selection of superior trees within families in Larix olgensis [J].Euphytica,2020,216(4):60. |
25 | ZHAO X Y, LI Y, ZHENG M,et al.Comparative analysis of growth and photosynthetic characteristics of(Populus simonii × P.nigra)×(P.nigra × P.simonii) hybrid clones of different ploidides[J].PLoS One,2015,10(4):e0119259. |
26 | 续九如.林木数量遗传学[M].北京:高等教育出版社,2006:45. |
XU J R.Quantitative Genetics in forestry[M].Beijing:Higher Education Press,2006:45. | |
27 | RAZAFIMAHATRATRA A R, RAMANANANTOANDRO T, RAZAFIMAHARO V,et al.Provenance and progeny performances and genotype×environment interactions of Eucalyptus robusta grown in Madagascar[J].Tree Genetics & Genomes,2016,12(3):38. |
28 | 丁昌俊,黄秦军,张冰玉,等.北方型美洲黑杨不同无性系重要性状评价[J].林业科学研究,2016,29(3):331-339. |
DING C J, HUANG Q J, ZHANG B Y,et al.Evaluation of important traits of different clones of North-typed Populus deltoides [J].Forest Research,2016,29(3):331-339. | |
29 | SERRANO-LEÓN H, AHTIKOSKI A, SONESSON J,et al.From genetic gain to economic gain:simulated growth and financial performance of genetically improved Pinus sylvestris and Pinus pinaster planted stands in France,Finland and Sweden[J].Forestry,2021,94(4):512-525. |
30 | 蒋莺.油茶杂交后代及其亲本的遗传关系分析与鉴别选育[D].福州:福建农林大学,2011. |
JIANG Y.Genetic relationship analysis and identification breeding of hybrid offspring and parents of Camellia oleifera [D].Fuzhou:Fujian Agriculture and Forestry University,2011. | |
31 | DELL B, THU P Q, NGHIA N H,et al.Early field performance and genetic variation of Dalbergia tonkinensis,a valuable rosewood in Vietnam[J].Forests,2022,13(12):1977. |
32 | 季孔庶,徐立安,王登宝,等.中国马尾松遗传改良研究历程与成就[J].南京林业大学学报(自然科学版),2022,46(6):10-22. |
JI K S, XU L A, WANG D B. et al.Progresses and achievements of genetic improvement on Masson pine(Pinus massoniana) in China[J].Journal of Nanjing Forestry University(Natural Science Edition),2022,46(6):10-22. | |
33 | 李岩,朱嘉瑶,王喜和,等.红松优树无性系及其子代的生长评价与选择研究[J].北京林业大学学报,2021,43(10):38-46. |
LI Y, ZHU J Y, WANG X H,et al.Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis [J].Journal of Beijing Forestry University,2021,43(10):38-46. | |
34 | 于海洋,庞忠义,殷春红,等.100个杨树无性系生长及材性变异研究[J].西北林学院学报,2023,38(4):134-142. |
YU H Y, PANG Z Y, YIN C H,et al.Variation analysis on the growth and wood properties of 100 poplar clones[J].Journal of Northwest Forestry University,2023,38(4):134-142. | |
35 | 陈晓阳,沈熙环.林木育种学[M].北京:高等教育出版社,2005. |
CHEN X Y, SHEN X H.Forestry breeding[M].Beijing:Higher Education Press,2005. | |
36 | 梁德洋.红松种子园亲本无性系及其子代变异选择研究[D].哈尔滨:东北林业大学,2021. |
LIANG D Y.A study on the selection of parent clones and their offspring variations in korean pine seed orchard[D].Harbin:Northeast Forestry University,2021. | |
37 | 张秦徽,王洪武,姜国云,等.红松半同胞家系变异分析及选择研究[J].植物研究,2019,39(4):557-567. |
ZHANG Q H, WANG H W, JIANG G Y,et al.Variation analysis and selection of Pinus koraiensis half-sib families[J].Bulletin of Botanical Research,2019,39(4):557-567. | |
38 | GALEANO E, THOMAS B R.Unraveling genetic variation among white spruce families generated through different breeding strategies:heritability,growth,physiology,hormones and gene expression[J].Frontiers in Plant Science,2023,14:1052425. |
39 | 王璧莹,赵曦阳,王洪武,等.依据生长性状对红松半同胞家系的评价选择[J].东北林业大学学报,2019,47(4):8-11. |
WANG B Y, ZHAO X Y, WANG H W,et al.Variance analysis of growth characteristics of 30 Pinus koraiensis half-sib families[J].Journal of Northeast Forestry University,2019,47(4):8-11. | |
40 | 贾庆彬,刘庚,赵佳丽,等.红松半同胞家系生长性状变异分析与优良家系选择[J].南京林业大学学报(自然科学版),2022,46(4):109-116. |
JIA Q B, LIU G, ZHAO J L. et al.Variation analyses of growth traits in half-sib families of Korean pine and superior families selection[J].Journal of Nanjing Forestry University(Natural Science Edition),2022,46(4):109-116. | |
41 | 孙晓波.15年生马尾松家系生长与材性性状变异分析及纸浆材优良家系选择[D].南京:南京林业大学,2022. |
SUN X B.Analysis of growth and variation in wood properties of 15-year-old Pinus massoniana families and selection of excellent pulp wood families[D].Nanjing:Nanjing Forestry University,2022. | |
42 | 陈柄华,张杰,刘桂丰,等.白桦半同胞家系纸浆材优良家系选择及选择方法评价[J].植物研究,2023,43(5):690-699. |
CHEN B H, ZHANG J, LIU G F,et al.Selection of excellent families and evaluation of selection method for pulpwood half-sibling families of Betula platyphylla [J].Bulletin of Botanical Research,2023,43(5):690-699. | |
43 | 管兰华,潘惠新,黄敏仁,等.美洲黑杨×欧美杨F1无性系的多性状联合选择[J].南京林业大学学报(自然科学版),2005,48(2):6-10. |
GUAN L H, PAN H X, HUANG M R,et al.Research on growth and wood properties joint genetic improvement of new clones of Poplus deltoides(I-69)[J].Journal of Nanjing Forestry University(Natural Science Edition),2005,48(2):6-10. | |
44 | 林思京.25年生马尾松生长和木材基本密度家系变异与选择[J].林业科学研究,2010,23(6):804-808. |
LIN S J.Growth and wood density of 25-year-old masson's pine:inter-family variation and selection[J].Forest Research,2010,23(6):804-808. | |
45 | 周雪燕,王璧莹,郝雪峰,等.长白落叶松半同胞家系生长和木材性状遗传变异与联合选择[J].植物研究,2022,42(3):383-393. |
ZHOU X Y, WANG B Y, HAO X F,et al.Genetic variation and joint selection of growth and wood traits in half-sib families of Larix olgensis [J].Bulletin of Botanical Research,2022,42(3):383-393. | |
46 | CHAUHAN N, SINGH D, KUMAR K,et al.Genetic variability,character association and diversity studies on wild apricot(Prunus armeniaca L.) genotypes in Himachal Pradesh,India[J].Genetic Resources and Crop Evolution,2020,67(7):1695-1705. |
47 | PIRITHIRAJ U, SOUNDARARAJAN R P.Trophic level interactions of host plant’s biophysical traits with insect pests and natural enemies on three jasmine species:a principal component analysis[J].Arthropod-Plant Interactions,2023,17(5):661-671. |
48 | 潘艳艳,许贵友,董利虎,等.日本落叶松全同胞家系苗期生长性状遗传变异[J].南京林业大学学报(自然科学版),2019,43(2):14-22. |
PAN Y Y, XU G Y, DONG L H,et al.Genetic variations of seedling growth traits among full-sib families of Larix kaempferi [J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(2):14-22. |
[1] | 曹文昱, 王军辉, 杨艳红, 麻文俊, 李放, 周林召, 熊星月, 胡晓亮, 马贯羊, 赵鲲. 楸树远缘杂交种花器官性状变异分析[J]. 植物研究, 2024, 44(2): 220-231. |
[2] | 徐晶, 崔莹, 王福森, 李开隆, 曲冠证, 赵曦阳. 东北地区不同间伐强度青山杨人工林生长及木材性状变异[J]. 植物研究, 2024, 44(2): 248-258. |
[3] | 石甜, 莫忠妹, 吴敏, 赵财. 药食同源植物薤白的谱系地理学研究[J]. 植物研究, 2022, 42(4): 574-583. |
[4] | 任毓辉, 聂帅, 彭春雪, 杨玲, 沈海龙. 红松胚性愈伤组织增殖的激素配比、糖源类型和增殖周期效应研究[J]. 植物研究, 2022, 42(4): 704-712. |
[5] | 周雪燕, 王璧莹, 郝雪峰, 胡兴国, 吴江涛, 郎凯, 胡钦波, 赵曦阳. 长白落叶松半同胞家系生长和木材性状遗传变异与联合选择[J]. 植物研究, 2022, 42(3): 383-393. |
[6] | 尹一卜, 李吉祥, 郭樱杰, 芦子廷, 肖英, 刘华领, 詹亚光, 曾凡锁. 白蜡属种间杂交子代木质素含量变异及FmPAL核苷酸多态性关联分析[J]. 植物研究, 2022, 42(2): 191-199. |
[7] | 魏志刚, 夏德安, 王瑞琪, 张洋, 刘莹莹, 李若林, 杨传平. 小兴安岭天然次生林不同林型下红松种源试验[J]. 植物研究, 2021, 41(5): 807-815. |
[8] | 马庆, 李芳蕊, 刘桂丰, 李慧玉. 航天诱变白桦生长性状分析[J]. 植物研究, 2021, 41(4): 540-546. |
[9] | 王芳, 陆志民, 王君, 张世凯, 李峪曦, 李绍臣, 张建秋, 杨雨春. 低温胁迫下红松与西伯利亚红松光合与气孔特性[J]. 植物研究, 2021, 41(2): 205-212. |
[10] | 章平生, 江锡兵, 龚榜初, 徐阳, 赖俊声, 吴聪连. 板栗与锥栗杂交F1代叶片表型变异及杂种优势研究[J]. 植物研究, 2021, 41(2): 281-294. |
[11] | 周雪燕, 高海燕, 李召珉, 赵银琨, 葛丽丽, 侯庆文, 丁文雅, 赵曦阳. 基于生长与结实评价红松种子园亲本[J]. 植物研究, 2020, 40(3): 376-385. |
[12] | 李翔, 范作义, 王井源, 王淇, 李喜鹏, 王德秋, 孔令远, 曹森林, 孟庆刚, 赵曦阳. 红松查尔酮合成酶基因CHS密码子偏好性分析[J]. 植物研究, 2020, 40(3): 447-457. |
[13] | 刘炳妤, 黄桂华, 梁坤南, 王西洋, 陈天宇, 周再知, 杨光. 柚木无性系光合生理特征与生长综合评价[J]. 植物研究, 2020, 40(2): 209-216. |
[14] | 祖述冲. β-环糊精包合红松籽油的制备工艺及生物利用度评价[J]. 植物研究, 2020, 40(2): 314-320. |
[15] | 李嘉琪, 韩喜东, 马盈慧, 李月季, 王立祥, 韩喜田, 刘志, 李海民, 赵曦阳. 樟子松无性系生长性状与结实量变异研究[J]. 植物研究, 2020, 40(2): 217-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||