植物研究 ›› 2022, Vol. 42 ›› Issue (3): 383-393.doi: 10.7525/j.issn.1673-5102.2022.03.008
周雪燕1, 王璧莹1, 郝雪峰2, 胡兴国2, 吴江涛2, 郎凯2, 胡钦波2, 赵曦阳1()
收稿日期:
2020-10-15
出版日期:
2022-05-20
发布日期:
2022-05-20
通讯作者:
赵曦阳
E-mail:zhaoxyphd@163.com
作者简介:
周雪燕(1994—),女,硕士研究生,主要从事林木遗传改良方面的研究。
基金资助:
Xueyan ZHOU1, Biying WANG1, Xuefeng HAO2, Xinguo HU2, Jiangtao WU2, Kai LANG2, Qinbo HU2, Xiyang ZHAO1()
Received:
2020-10-15
Online:
2022-05-20
Published:
2022-05-20
Contact:
Xiyang ZHAO
E-mail:zhaoxyphd@163.com
About author:
ZHOU Xueyan(1994—),female,master,major in tree genetic and improvement.
Supported by:
摘要:
长白落叶松(Larix olgensis)是我国东北重要的用材树种,根据生长和木材性状对其进行综合选择至关重要。本研究以吉林省延边自治区汪清林业局32年生的49个长白落叶松半同胞家系为材料,对其9个生长性状(树高、地径、胸径、3 m径、材积、尖削度、冠幅、分枝角和通直度)和4个木材性状(木材基本密度、管胞长度、管胞宽度和管胞长宽比)进行测定与分析。结果表明:不同变异来源间所有性状差异均达极显著水平(P<0.01);各性状家系遗传力均较高(0.51~0.96);表型变异系数为3.04%(分枝角)~23.15%(冠幅);各性状相关系数为-0.367(管胞宽度与管胞长宽比)~0.994(胸径与材积);主成分分析结果表明,4个主成分的累计贡献率达到78.46%,包含了家系生长性状和木材性状的大部分信息;分别以生长和木材性状对家系进行综合评价,初步筛选出5个生长性状优良家系(S78、S81、S80、S84和S83)和5个木材性状优良家系(S37、S51、S6、S30和S19),结合生长和木材性状初步筛选出5个优良家系(S89、S74、S76、S82和S83)。本研究初选的材料可以为良种选育提供基础,亲本可以为改良种子园营建提供材料。
中图分类号:
周雪燕, 王璧莹, 郝雪峰, 胡兴国, 吴江涛, 郎凯, 胡钦波, 赵曦阳. 长白落叶松半同胞家系生长和木材性状遗传变异与联合选择[J]. 植物研究, 2022, 42(3): 383-393.
Xueyan ZHOU, Biying WANG, Xuefeng HAO, Xinguo HU, Jiangtao WU, Kai LANG, Qinbo HU, Xiyang ZHAO. Genetic Variation and Joint Selection of Growth and Wood Traits in Half-sib Families of Larix olgensis[J]. Bulletin of Botanical Research, 2022, 42(3): 383-393.
表2
49个半同胞家系各性状方差分析结果
性状 Traits | 变异来源 Source of variation | 平方和 Sum of squares | 自由度 df | 地方值 Mean square | F | P |
---|---|---|---|---|---|---|
树高 Tree height | 家系 Families | 229.099 | 48 | 4.773 | 4.246 | 0.000 |
区组 Blocks | 42.557 | 5 | 8.511 | 7.572 | 0.000 | |
家系×区组 Families × Blocks | 650.491 | 240 | 2.710 | 2.411 | 0.000 | |
地径 Ground diameter | 家系 Families | 2 152.472 | 48 | 44.843 | 5.460 | 0.000 |
区组 Blocks | 367.156 | 5 | 73.431 | 8.941 | 0.000 | |
家系×区组 Families × Blocks | 3 720.600 | 240 | 15.502 | 1.888 | 0.000 | |
胸径 Diameter of breast height | 家系 Families | 445.095 | 48 | 9.273 | 6.195 | 0.000 |
区组 Blocks | 69.003 | 5 | 13.801 | 9.221 | 0.000 | |
家系×区组 Families × Blocks | 824.856 | 240 | 3.437 | 2.296 | 0.000 | |
3m径 Diameter of stem at 3 m height | 家系 Families | 1 447.606 | 48 | 30.158 | 7.178 | 0.000 |
区组 Blocks | 228.178 | 5 | 45.636 | 10.862 | 0.000 | |
家系×区组 Families × Blocks | 2 167.623 | 240 | 9.032 | 2.150 | 0.000 | |
材积 Volume | 家系 Families | 0.186 | 48 | 0.004 | 5.313 | 0.000 |
区组 Blocks | 0.032 | 5 | 0.006 | 8.741 | 0.000 | |
家系×区组 Families × Blocks | 0.381 | 240 | 0.002 | 2.180 | 0.000 | |
尖削度 Taperingness | 家系 Families | 2.705 | 48 | 0.056 | 5.834 | 0.000 |
区组 Blocks | 0.406 | 5 | 0.081 | 8.405 | 0.000 | |
家系×区组 Families × Blocks | 3.777 | 240 | 0.016 | 1.629 | 0.000 | |
冠幅 Crown width | 家系 Families | 1 389 237.642 | 48 | 28 942.451 | 5.266 | 0.000 |
区组 Blocks | 444 145.011 | 5 | 88 829.002 | 16.162 | 0.000 | |
家系×区组 Families × Blocks | 6 918 499.433 | 240 | 28 827.081 | 5.245 | 0.000 | |
分枝角 Branch angle | 家系 Families | 553.047 | 48 | 11.522 | 2.041 | 0.000 |
区组 Blocks | 126.208 | 5 | 25.242 | 4.472 | 0.000 | |
家系×区组 Families × Blocks | 3 362.854 | 240 | 14.012 | 2.483 | 0.000 | |
通直度 Stem straightness degree | 家系 Families | 49.490 | 48 | 1.031 | 10.322 | 0.000 |
区组 Blocks | 18.849 | 5 | 3.770 | 37.740 | 0.000 | |
家系×区组 Families × Blocks | 212.068 | 240 | 0.884 | 8.846 | 0.000 | |
木材基本密度 Wood density | 家系 Families | 0.885 | 48 | 0.018 | 2.467 | 0.000 |
管胞长度 Tracheid length | 家系 Families | 15 095 690.487 | 48 | 314 493.552 | 18.289 | 0.000 |
管胞宽度 Tracheid width | 家系 Families | 1 483.846 | 48 | 30.913 | 22.112 | 0.000 |
管胞长宽比 Tracheid length/Tracheid width | 家系 Families | 18 943.197 | 48 | 394.650 | 12.747 | 0.000 |
表3
49个半同胞家系各性状遗传变异参数
性状 Traits | 均值±标准差 Mean±SD | 变幅 Range | 表型变异系数 PCV(%) | 遗传力 h2 |
---|---|---|---|---|
树高 Tree height /m | 17.39±1.21 | 10.76~21.12 | 6.95 | 0.76 |
地径 Ground diameter /cm | 21.28±3.22 | 13.20~36.00 | 15.14 | 0.82 |
胸径 Diameter of breast height /cm | 17.86±1.42 | 12.71~21.59 | 7.93 | 0.84 |
3 m径 Diameter of stem at 3 m height /cm | 14.48±2.39 | 7.20~20.00 | 16.47 | 0.86 |
材积 Volume /m3 | 0.16±0.03 | 0.06~0.26 | 19.28 | 0.81 |
尖削度 Taperingness | 1.22±0.11 | 1.09~1.70 | 8.97 | 0.83 |
冠幅 Crown width /cm | 422.02±97.71 | 205.00~700.00 | 23.15 | 0.81 |
分枝角 Branch angle /(˚) | 87.10±2.65 | 77.50~90.00 | 3.04 | 0.51 |
通直度 Stem straightness degree | 4.77±0.49 | 3.00~5.00 | 10.31 | 0.90 |
木材基本密度 Wood density /(g·m-3) | 0.60±0.09 | 0.35~0.97 | 15.30 | 0.59 |
管胞长度 Tracheid length /μm | 2 303.01±215.36 | 1 311.65~2 821.04 | 6.35 | 0.95 |
管胞宽度 Tracheid width /μm | 27.12±2.07 | 18.47~33.51 | 7.64 | 0.95 |
管胞长宽比 Tracheid length/Tracheid width | 85.05±6.20 | 61.77~111.84 | 7.30 | 0.96 |
表4
半同胞家系各性状相关性
性状 Traits | 树高 Tree height | 地径 Ground diameter | 胸径 Diameter of breast height | 3 m径 Diameter of stem at 3 m height | 材积 Volume | 尖削度 Taperingness | 冠幅 Crown width | 分枝角 Branch angle | 通直度 Stem straightness degree | 木材基本密度 Wood density | 管胞长度 Tracheid length | 管胞宽度 Tracheid width |
---|---|---|---|---|---|---|---|---|---|---|---|---|
地径 Ground diameter | 0.908** | |||||||||||
胸径 Diameter of breast height | 0.978** | 0.943** | ||||||||||
3 m径 Diameter of stem at 3 m height | 0.930** | 0.973** | 0.976** | |||||||||
材积 Volume | 0.977** | 0.967** | 0.994** | 0.979** | ||||||||
尖削度 Taperingness | 0.742** | 0.953** | 0.823** | 0.907** | 0.857** | |||||||
冠幅 Crown width | 0.066** | 0.077** | 0.074** | 0.077** | 0.076** | 0.077** | ||||||
分枝角 Branch angle | 0.038 | 0.057* | 0.040 | 0.043 | 0.045 | 0.063** | 0.035 | |||||
通直度 Stem straightness degree | 0.126** | 0.140** | 0.137** | 0.139** | 0.139** | 0.137** | 0.376** | 0.150** | ||||
木材基本密度 Wood density | -0.115** | -0.126** | -0.137** | -0.141** | -0.129** | -0.126** | 0.022 | 0.016 | 0.045 | |||
管胞长度 Tracheid length | -0.065** | -0.092** | -0.082** | -0.099** | -0.080** | -0.105** | 0.107** | -0.060* | 0.023 | 0.142** | ||
管胞宽度 Tracheid width | -0.016 | -0.022 | -0.027 | -0.032 | -0.023 | -0.027 | 0.038 | -0.045 | -0.022 | -0.064** | 0.461** | |
管胞长宽比 Tracheid length/Tracheid width | -0.060* | -0.084** | -0.071** | -0.085** | -0.071** | -0.093** | 0.078** | -0.024 | 0.041 | 0.205** | 0.652** | -0.367** |
表5
半同胞家系各性状主成分分析结果
性状 Traits | 主成分Ⅰ PCA Ⅰ | 主成分Ⅱ PCA Ⅱ | 主成分Ⅲ PCA Ⅲ | 主成分Ⅳ PCA Ⅳ |
---|---|---|---|---|
树高 Tree height /m | 0.95 | 0.05 | 0.04 | -0.06 |
地径 Ground diameter /cm | 0.99 | 0.03 | 0.02 | -0.04 |
胸径 Diameter of breast height /cm | 0.98 | 0.04 | 0.03 | -0.06 |
3 m径 Diameter of stem at 3 m height /cm | 0.99 | 0.02 | 0.02 | -0.05 |
材积 Volume /m3 | 0.99 | 0.04 | 0.03 | -0.05 |
尖削度 Taperingness | 0.91 | 0.01 | 0.00 | -0.02 |
冠幅 Crown width /cm | 0.10 | 0.38 | -0.21 | 0.63 |
分枝角 Branch angle /(°) | 0.07 | 0.00 | -0.32 | 0.31 |
通直度 Stem straightness degree | 0.18 | 0.30 | -0.36 | 0.65 |
木材基本密度 Wood density /(g·m-3) | -0.17 | 0.36 | -0.23 | -0.13 |
管胞长度 Tracheid length /μm | -0.13 | 0.86 | 0.46 | -0.08 |
管胞宽度 Tracheid width /μm | -0.03 | 0.10 | 0.88 | 0.42 |
管胞长宽比 Tracheid length/Tracheid width | -0.12 | 0.81 | -0.27 | -0.44 |
特征值 Eigenvalues | 5.72 | 1.77 | 1.38 | 1.33 |
贡献率 Contribution rate /% | 44.00 | 13.62 | 10.63 | 10.20 |
累计贡献率 Cumulative contribution rate /% | 44.00 | 57.63 | 68.26 | 78.46 |
表6
各家系 Qi 值
生长性状联合选择 Comprehensive evaluation based on growth traits | 木材性状联合选择 Comprehensive evaluation based on wood traits | 生长与木材性状联合选择 Comprehensive evaluation based on growth and wood traits | |||
---|---|---|---|---|---|
家系 Families | Qi | 家系 Families | Qi | 家系 Families | Qi |
S78 | 2.24 | S37 | 1.08 | S89 | 2.41 |
S81 | 2.23 | S51 | 1.04 | S74 | 2.41 |
S80 | 2.23 | S6 | 1.04 | S76 | 2.40 |
S84 | 2.23 | S30 | 1.04 | S82 | 2.40 |
S83 | 2.23 | S19 | 1.01 | S83 | 2.40 |
S82 | 2.23 | S54 | 1.01 | S84 | 2.40 |
S76 | 2.23 | S16 | 1.00 | S78 | 2.40 |
S88 | 2.22 | S12 | 0.99 | S80 | 2.39 |
S89 | 2.22 | S62 | 0.98 | S72 | 2.39 |
S77 | 2.22 | S18 | 0.98 | S81 | 2.39 |
S72 | 2.22 | S8 | 0.98 | S91 | 2.39 |
S90 | 2.21 | S2 | 0.97 | S16 | 2.39 |
S74 | 2.21 | S74 | 0.96 | S73 | 2.39 |
S91 | 2.20 | S15 | 0.95 | S37 | 2.39 |
S73 | 2.20 | S61 | 0.95 | S62 | 2.39 |
S4 | 2.20 | S57 | 0.94 | S90 | 2.38 |
S92 | 2.18 | S89 | 0.94 | S77 | 2.38 |
S55 | 2.18 | S58 | 0.94 | S88 | 2.38 |
S62 | 2.18 | S73 | 0.94 | S55 | 2.37 |
S71 | 2.17 | S60 | 0.93 | S30 | 2.37 |
S16 | 2.17 | S55 | 0.93 | S51 | 2.37 |
S63 | 2.17 | S91 | 0.93 | S2 | 2.37 |
S2 | 2.16 | S9 | 0.92 | S6 | 2.36 |
S18 | 2.14 | S71 | 0.92 | S71 | 2.36 |
S58 | 2.14 | S10 | 0.92 | S92 | 2.36 |
S64 | 2.13 | S76 | 0.91 | S18 | 2.36 |
S37 | 2.13 | S82 | 0.90 | S54 | 2.36 |
S54 | 2.13 | S90 | 0.90 | S4 | 2.35 |
S30 | 2.13 | S92 | 0.90 | S63 | 2.35 |
S61 | 2.13 | S83 | 0.90 | S58 | 2.34 |
S11 | 2.13 | S84 | 0.90 | S12 | 2.34 |
S25 | 2.13 | S63 | 0.89 | S61 | 2.33 |
S3 | 2.13 | S72 | 0.89 | S8 | 2.32 |
S51 | 2.13 | S64 | 0.89 | S19 | 2.32 |
S6 | 2.12 | S25 | 0.88 | S60 | 2.31 |
S38 | 2.12 | S80 | 0.88 | S57 | 2.31 |
S60 | 2.12 | S81 | 0.87 | S64 | 2.31 |
S5 | 2.11 | S38 | 0.87 | S25 | 2.30 |
S12 | 2.11 | S13 | 0.87 | S10 | 2.30 |
S10 | 2.11 | S78 | 0.86 | S9 | 2.30 |
S1 | 2.11 | S5 | 0.86 | S15 | 2.29 |
S57 | 2.11 | S77 | 0.86 | S38 | 2.29 |
S13 | 2.11 | S17 | 0.86 | S5 | 2.28 |
S7 | 2.11 | S88 | 0.85 | S3 | 2.28 |
S9 | 2.10 | S4 | 0.83 | S13 | 2.28 |
S8 | 2.10 | S3 | 0.83 | S11 | 2.27 |
S15 | 2.09 | S7 | 0.80 | S1 | 2.26 |
S17 | 2.09 | S11 | 0.80 | S17 | 2.25 |
S19 | 2.08 | S1 | 0.80 | S7 | 2.25 |
表7
入选家系遗传增益计算表
入选家系 Families | 生长性状平均值 | 木材性状平均值 | 选择差 W | 遗传增益 ΔG | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
树高 H | 地径 GD | 胸径 DBH | 3m径 D3 | 材积 V | 管胞长度 TL | 管胞宽度 TW | 管胞长宽比 TL/TW | 树高 H | 地径 GD | 胸径 DBH | 3m径 D3 | 材积 V | 管胞长度 TL | 管胞宽度 TW | 管胞长宽比 TL/TW | 树高 H | 地径 GD | 胸径 DBH | 3m径 D3 | 材积 V | 管胞长度 TL | 管胞宽度 TW | 管胞长宽比 TL/TW | |
S6 | 17.08 | 20.52 | 17.48 | 13.79 | 0.15 | 2 311.18 | 23.73 | 97.39 | -0.31 | -0.77 | -0.38 | -0.69 | -0.01 | 8.17 | -3.39 | 12.42 | -1.35 | -2.97 | -1.79 | -4.10 | -5.06 | 0.34 | -11.88 | 14.10 |
S19 | 16.89 | 19.66 | 17.08 | 13.08 | 0.14 | 2 407.30 | 25.63 | 93.93 | -0.50 | -1.63 | -0.78 | -1.40 | -0.02 | 104.29 | -1.49 | 9.01 | -2.19 | -6.28 | -3.67 | -8.31 | -10.13 | 4.30 | -5.27 | 10.19 |
S30 | 17.20 | 20.56 | 17.53 | 13.87 | 0.15 | 2 550.27 | 26.39 | 96.64 | -0.19 | -0.73 | -0.33 | -0.61 | -0.01 | 247.26 | -0.73 | 11.72 | -0.83 | -2.81 | -1.55 | -3.62 | -5.06 | 10.20 | -2.56 | 13.25 |
S37 | 17.21 | 20.61 | 17.56 | 13.91 | 0.15 | 2 436.32 | 23.79 | 102.41 | -0.18 | -0.68 | -0.30 | -0.57 | -0.01 | 133.31 | -3.33 | 16.93 | -0.79 | -2.62 | -1.41 | -3.39 | -5.06 | 5.50 | -11.66 | 18.99 |
S51 | 17.17 | 20.53 | 17.52 | 13.87 | 0.15 | 2 519.37 | 25.98 | 96.97 | -0.22 | -0.76 | -0.34 | -0.61 | -0.01 | 216.36 | -1.14 | 12.05 | -0.96 | -2.93 | -1.60 | -3.62 | -5.06 | 8.92 | -3.99 | 13.62 |
S74 | 17.75 | 22.28 | 18.41 | 15.48 | 0.17 | 2 484.76 | 28.24 | 87.99 | 0.36 | 0.99 | 0.55 | 1.89 | 0.01 | 181.75 | 1.12 | 3.07 | 1.57 | 3.81 | 2.59 | 6.04 | 6.77 | 7.50 | 3.92 | 2.74 |
S76 | 17.84 | 22.73 | 18.59 | 15.84 | 0.17 | 2 199.93 | 26.29 | 83.68 | 0.45 | 1.44 | 0.73 | 1.92 | 0.01 | -103.08 | -0.83 | -1.53 | 1.97 | 5.55 | 3.43 | 8.08 | 6.89 | -4.25 | -2.91 | -1.40 |
S78 | 17.90 | 23.11 | 18.68 | 16.01 | 0.18 | 2 027.77 | 25.45 | 79.68 | 0.51 | 1.78 | 0.82 | 1.53 | 0.02 | -275.24 | -1.67 | -5.24 | 2.22 | 7.01 | 3.84 | 9.11 | 9.13 | -11.35 | -5.85 | -5.92 |
S80 | 17.89 | 23.00 | 18.57 | 15.74 | 0.17 | 2 153.77 | 26.56 | 81.09 | 0.50 | 1.71 | 0.71 | 1.26 | 0.01 | -149.24 | -0.56 | -3.83 | 2.18 | 6.59 | 3.34 | 7.53 | 7.19 | -6.16 | -1.96 | -4.33 |
S81 | 17.93 | 22.99 | 18.58 | 15.77 | 0.18 | 2 190.80 | 27.29 | 80.28 | 0.54 | 1.70 | 0.72 | 1.34 | 0.02 | -112.21 | 0.17 | -4.64 | 2.35 | 6.55 | 3.39 | 7.66 | 10.13 | -4.63 | 0.60 | -5.25 |
S82 | 17.91 | 22.90 | 18.53 | 15.66 | 0.17 | 2 351.53 | 28.36 | 82.92 | 0.52 | 1.61 | 0.67 | 1.88 | 0.01 | 48.52 | 1.24 | -2.32 | 2.27 | 6.20 | 3.13 | 7.01 | 6.62 | 2.00 | 4.34 | -2.26 |
S83 | 17.91 | 22.90 | 18.53 | 15.68 | 0.17 | 2 151.76 | 26.04 | 82.63 | 0.52 | 1.61 | 0.67 | 1.20 | 0.03 | -151.25 | -1.08 | -2.29 | 2.26 | 6.20 | 3.14 | 7.15 | 7.06 | -6.24 | -3.78 | -2.59 |
S84 | 17.89 | 22.93 | 18.56 | 15.67 | 0.17 | 2 178.24 | 26.38 | 82.57 | 0.50 | 1.64 | 0.70 | 1.19 | 0.01 | -124.77 | -0.74 | -2.35 | 2.19 | 6.32 | 3.28 | 7.09 | 5.06 | -5.15 | -2.59 | -2.66 |
S89 | 17.87 | 22.95 | 18.52 | 15.56 | 0.17 | 2 428.34 | 28.11 | 86.39 | 0.48 | 1.66 | 0.66 | 1.96 | 0.01 | 125.33 | 0.99 | 1.47 | 2.10 | 6.29 | 3.10 | 6.41 | 7.24 | 5.17 | 3.44 | 1.71 |
1 | 潘艳艳.日本落叶松种子园亲本及其子代变异研究[D].哈尔滨:东北林业大学,2019. |
PAN Y Y.Study on the variation of parents and progeny of Larix kaempferi seed orchard[D].Harbin:Northeast Forestry University,2019. | |
2 | 周雪燕,高海燕,李召珉,等.基于生长与结实评价红松种子园亲本[J].植物研究,2020,40(3):376-385. |
ZHOU X Y, GAO H Y, LI Z M,et al.Evaluating parents of Pinus Koraiensis seeds orchard with growth and fruiting[J].Bulletin of Botanical Research,2020,40(3):376-385. | |
3 | 王昊.林木种子园研究现状与发展趋势[J].世界林业研究,2013,26(4):32-37. |
WANG H.Research progress and development trend of tree seed orchard[J].World Forestry Research,2013,26(4):32-37. | |
4 | 夏辉,赵国辉,司冬晶,等.中国林木种子园建设与管理技术探讨[J].西部林业科学,2016,45(2):46-51. |
XIA H, ZHAO G H, SI D J,et al.Construction and management technology of tree seed orchard in China[J].Journal of West China Forestry Science,2016,45(2):46-51. | |
5 | 徐清乾,许忠坤,程政红,等.第二代杉木种子园建立技术研究[J].湖南林业科技,2002,29(4):16-19. |
XU Q Q, XU Z K, CHENG Z H,et al.The building techniques on second grade seed garden of Cunninghamia lanceolata [J].Hunan Forestry Science & Technology,2002,29(4):16-19. | |
6 | 杨培华,樊军锋,刘永红,等.油松第2代无性系种子园营建技术[J].浙江林学院学报,2005,22(2):157-160. |
YANG P H, FAN J F, LIU Y H,et al.Techniques of constructing the second generation clone-orchards of Pinus tabulaeformis [J].Journal of Zhejiang Forestry College,2005,22(2):157-160. | |
7 | 李悦,瞿超,续九如,等.中国大陆林木遗传育种学科1949—2003年的研究历程[J].北京林业大学学报,2005,27(1):79-87. |
LI Y, QU C, XU J R,et al.Progress in forest genetics and tree breeding in mainland China during 1949-2003 based on an analysis of published papers[J].Journal of Beijing Forestry University,2005,27(1):79-87. | |
8 | 王金宁,侯丹,张含国,等.长白落叶松生长变异及优良家系选择研究[J].森林工程,2018,34(1):6-12. |
WANG J N, HOU D, ZHANG H G,et al.Genetic variation on growth characters and family selection of Larix olgensis henry[J].Forest Engineering,2018,34(1):6-12. | |
9 | 李景云,于秉君,褚延广,等.帽儿山地区21年生长白落叶松种源试验[J].东北林业大学学报,2002,30(4):114-117. |
LI J Y, YU B J, CHU Y G,et al.The provenance test of 21 year-old Larix olgensis at Maoershan Area[J].Journal of Northeast Forestry University,2002,30(4):114-117. | |
10 | 张鑫鑫,夏辉,赵昕,等.长白落叶松种子园亲本生长与结实性状综合评价[J].植物研究,2017,37(6):933-940. |
ZHANG X X, XIA H, ZHAO X,et al.Comprehensive evaluation of growth and fruit traits of Larix olgensis parents in seed orchard[J].Bulletin of Botanical Research,2017,37(6):933-940. | |
11 | 罗梅,陈绍志.不同龄组长白落叶松种内及种间竞争研究[J].北京林业大学学报,2018,40(9):33-44. |
LUO M, CHEN S Z.Intraspecific and interspecific competition of Larix olgensis plantations in different age groups[J].Journal of Beijing Forestry University,2018,40(9):33-44. | |
12 | PENG W, PUKKALA T, JIN X J,et al.Optimal management of larch(Larix olgensis A.Henry) plantations in Northeast China when timber production and carbon stock are considered[J].Annals of Forest Science,2018,75(2):63. |
13 | 胡新生, Ennos R A,王笑山.论我国兴安落叶松、长白落叶松及华北落叶松种间遗传进化关系(英文)[J].林业科学,1999,35(3):84-96. |
HU X S, ENNOS R A, WANG X S.On evolutionary relationships among three Larix Taxa in China:L.gmelinii(Rupr) Rupr,L.olgensis Henry and L.principis-rupprechtii Mayr.[J].Scientia Silvae Sinicae,1999,35(3):84-96. | |
14 | 于秉君,杨传平.5年生长白落叶松的种源试验研究[J].东北林业大学学报,1988,16(3):27-33. |
YU B J, YANG C P.The provenance test of 5-year-old Larix olgensis [J].Journal of Northeast Forestry University,1988,16(3):27-33. | |
15 | YU B J.A study on the geographic variation and selection of the best provenance of Larix olgensis [J].Journal of Northeast Forestry University,1994,5(1):1-9. |
16 | 李自敬,李雪峰,张含国,等.长白落叶松优良家系选择的研究[J].林业科技,2008,33(4):1-4. |
LI Z J, LI X F, ZHANG H G,et al.Study on selection of superior families of Larix olgensis [J].Forestry Science & Technology,2008,33(4):1-4. | |
17 | 韩艳茹,白玉茹,李向晨,等.长白落叶松优良无性系选择试验[J].林业科技,2009,34(5):5-6. |
HAN Y R, BAI Y R, LI X C,et al.Selection of excellent clones of Larix olgensis [J].Forestry Science & Technology,2009,34(5):5-6. | |
18 | QI L Z.Study on prediction model of seed crop of Larix olgensis Seed Orchard[J].Journal of Northeast Forestry University,1994,5(3):6-12. |
19 | 白玉明,王奉吉,沈红莉,等.樟子松、长白落叶松种子园经营管理技术研究与探讨[J].中国西部科技,2007,(20):20-21. |
BAI Y M, WANG F J, SHEN H L,et al.Research and Discussion on management technology of Seed orchard of Pinus Sylvestris and Larix olgensis [J].Science and Technology of West China,2007,(20):20-21. | |
20 | 赵曦阳.白杨杂交试验与杂种无性系多性状综合评价[D].北京:北京林业大学,2010. |
ZHAO X Y.Study on hybridization and evaluation of multiple characters of hybrid clones in Chinese white poplar[D].Beijing:Beijing Forestry University,2010. | |
21 | 孟宪宇.测树学[M].北京:中国林业出版社,2004. |
MENG X Y.Forest measurement[M].Beijing:China Forestry Press,2004. | |
22 | 欧建德,吴志庄,康永武.杉莲混交林中乳源木莲生长形质、空间利用能力的混交比例效应[J].南京林业大学学报(自然科学版),2020,44(1):89-96. |
OU J D, WU Z Z, KANG Y W.Effects of mixing proportion on the growth,stem form quality and spatial utilizataion ability of Manglietia yuyuanensis in mixed forests with Cunninghamia lanceolata and M.yuyuanensis [J].Journal of Nanjing Forestry University(Natural Sciences Edition),2020,44(1):89-96. | |
23 | 刘超逸,刘桂丰,方功桂,等.四倍体白桦木材纤维性状比较及优良母树选择[J].北京林业大学学报,2017,39(2):9-15. |
LIU C Y, LIU G F, FANG G G,et al.Comparison of tetraploid Betula platyphylla wood fiber traits and selection of superior seed trees[J].Journal of Beijing Forestry University,2017,39(2):9-15. | |
24 | LIANG D Y, DING C J, ZHAO G H,et al.Variation and selection analysis of Pinus koraiensis clones in northeast China[J].Journal of Forestry Research,2018,29(3):611-622. |
25 | LIU M R, YIN S P, SI D J,et al.Variation and genetic stability analyses of transgenic TaLEA poplar clones from four different sites in China[J].Euphytica,2015,206(2):331-342. |
26 | KAVIRIRI D K, LIU X T, FAN Z Y,et al.Genetic variation in growth and cone traits of Pinus Koraiensis half-sib families in Northeast China[J].Phyton-International Journal of Experimental Botany,2020,89(1):57-69. |
27 | ZHANG H, ZHANG Y H Y, ZHANG D W,et al.Progeny performance and selection of superior trees within families in Larix olgensis [J].Euphytica,2020,216(4):60. |
28 | ZHAO X Y, LI Y, ZHENG M,et al.Comparative analysis of growth and photosynthetic characteristics of(Populus simonii × P.nigra) × (P.nigra × P.simonii) hybrid clones of different ploidides[J].PloS One,2015,10(4):e0119259. |
29 | PLIURA A, ZHANG S Y, MACKAY J,et al.Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials[J].Forest Ecology and Management,2007,238(1/2/3):92-106. |
30 | PAN Y Y, JIANG L P, XU G Y,et al.Evaluation and selection analyses of 60 Larix kaempferi clones in four provenances based on growth traits and wood properties[J].Tree Genetics & Genomes,2020,16(2):27. |
31 | 潘艳艳,许贵友,董利虎,等.日本落叶松全同胞家系苗期生长性状遗传变异[J].南京林业大学学报(自然科学版),2019,43(2):14-22. |
PAN Y Y, XU G Y, DONG L H,et al.Genetic variations of seedling growth traits among full-sib families of Larix kaempferi [J].Journal of Nanjing Forestry University(Natural Sciences Edition),2019,43(2):14-22. | |
32 | 陈晓阳,沈熙环.林木育种学[M].北京:高等教育出版社,2005. |
CHEN X Y, SHEN X H.Forest tree breeding[M].Beijing:Higher Education Press,2005. | |
33 | SAFAVI S A, POURDAD S S, TAEB M,et al.Assessment of genetic variation among safflower(Carthamus tinctorius L.) accessions using agro-morphological traits and molecular markers[J].Journal of Food Agriculture and Environment,2018,8(3):616-625. |
34 | 蒙宽宏,张文达.长白落叶松半同胞子代测定及优良家系的选择[J].林业勘查设计,2014(3):62-64. |
MENG K H, ZHANG W D.The Half-sib progeny test and selection of good families in Larix olgensis [J].Forest Investigation Design,2014(3):62-64. | |
35 | 尹绍鹏,赵国辉,夏辉,等.长白落叶松半同胞子代测定研究[J].西南林业大学学报,2016,36(1):63-68. |
YIN S P, ZHAO G H, XIA H,et al.Stacly on progeny test of half-sibs families in Larix olgensis [J].Journal of Southwest Forestry University,2016,36(1):63-68. | |
36 | SCHUTTE C, AXELROD B N.Correlation coefficients[M]//KREUTZER J S,DELUCA J,CAPLAN B.Encyclopedia of clinical neuropsychology.Cham:Springer,2018. |
37 | 张秦徽,王洪武,姜国云,等.红松半同胞家系变异分析及选择研究[J].植物研究,2019,39(4):557-567. |
ZHANG Q H, WANG H W, JIANG G Y,et al.Variation analysis and selection of Pinus koraiensis half-sib families[J].Bulletin of Botanical Research,2019,39(4):557-567. | |
38 | CHAUHAN N, SINGH D, KUMAR K,et al.Genetic variability,character association and diversity studies on wild apricot(Prunus armeniaca L.) genotypes in Himachal Pradesh,India[J].Genetic Resources and Crop Evolution,2020,67(7):1695-1705. |
39 | 赵曦阳,马开峰,沈应柏,等.白杨派杂种无性系植株早期性状变异与选择研究[J].北京林业大学学报,2012,34(2):45-51. |
ZHAO X Y, MA K F, SHEN Y B,et al.Characteristic variation and selection of forepart hybrid clones of Sect.Populus [J].Journal of Beijing Forestry University,2012,34(2):45-51. | |
40 | WANG F, ZHANG Q H, TIAN Y G,et al.Comprehensive assessment of growth traits and wood properties in half-sib Pinus koraiensis families[J].Euphytica,2018,214(11):202. |
41 | 管兰华,潘惠新,黄敏仁,等.美洲黑杨×欧美杨F1无性系的多性状联合选择[J].南京林业大学学报(自然科学版),2005,29(2):6-10. |
GUAN L H, PAN H X, HUANG M R,et al.Research on growth and wood properties joint genetic improvement of new clones of Poplus deltoides(I-69) × P.euramericana (I-45)[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2005,29(2):6-10. | |
42 | 李嘉琪,韩喜东,马盈慧,等.樟子松无性系生长性状与结实量变异研究[J].植物研究,2020,40(2):217-223. |
LI J Q, HAN X D, MA Y H,et al.Variation analysis of growth traits and coning quantity of Pinus sylvestris var.mongolica clones[J].Bulletin of Botanical Research,2020,40(2):217-223. | |
43 | 唐杰,曹振宇,侯丹,等.长白落叶松变异分析及优良家系早期选择[J].四川林业科技,2019,40(6):19-24. |
TANG J, CAO Z Y, HOU D,et al.Genetic variation and early selection of Larix olgensis families[J].Journal of Sichuan Forestry Science and Technology,2019,40(6):19-24. |
[1] | 石甜, 莫忠妹, 吴敏, 赵财. 药食同源植物薤白的谱系地理学研究[J]. 植物研究, 2022, 42(4): 574-583. |
[2] | 尹一卜, 李吉祥, 郭樱杰, 芦子廷, 肖英, 刘华领, 詹亚光, 曾凡锁. 白蜡属种间杂交子代木质素含量变异及FmPAL核苷酸多态性关联分析[J]. 植物研究, 2022, 42(2): 191-199. |
[3] | 杨宇宁, 董昊, 董实伟, 王乃锐, 宋跃, 张含国, 李淑娟. 长白落叶松转录因子LobHLH34克隆及表达分析[J]. 植物研究, 2022, 42(1): 112-120. |
[4] | 张丹丹, 李翔, 王璧莹, 王喜和, 孙权, 吴蕴洋, 李平扬, 李德尧, 李玉磊, 赵曦阳. 长白落叶松种子园亲本无性系生长性状变异研究[J]. 植物研究, 2022, 42(1): 130-137. |
[5] | 马庆, 李芳蕊, 刘桂丰, 李慧玉. 航天诱变白桦生长性状分析[J]. 植物研究, 2021, 41(4): 540-546. |
[6] | 王芳, 蒋路平, 张秦徽, 陆志民, 杨雨春, 张建秋, 赵曦阳. 不同地点51个长白落叶松无性系苗期生长变异和遗传稳定性分析[J]. 植物研究, 2021, 41(3): 336-343. |
[7] | 章平生, 江锡兵, 龚榜初, 徐阳, 赖俊声, 吴聪连. 板栗与锥栗杂交F1代叶片表型变异及杂种优势研究[J]. 植物研究, 2021, 41(2): 281-294. |
[8] | 刘婷岩, 郝龙飞, 王续富, 闫海霞, 白淑兰. 氮沉降及菌根真菌对长白落叶松苗木根系构型及根际酶活性的影响[J]. 植物研究, 2021, 41(1): 145-151. |
[9] | 张磊, 熊欢欢, 曹庆, 赵佳丽, 张含国. 瞬时遗传转化长白落叶松NAC基因植株抗旱性的研究[J]. 植物研究, 2020, 40(3): 394-400. |
[10] | 刘炳妤, 黄桂华, 梁坤南, 王西洋, 陈天宇, 周再知, 杨光. 柚木无性系光合生理特征与生长综合评价[J]. 植物研究, 2020, 40(2): 209-216. |
[11] | 李嘉琪, 韩喜东, 马盈慧, 李月季, 王立祥, 韩喜田, 刘志, 李海民, 赵曦阳. 樟子松无性系生长性状与结实量变异研究[J]. 植物研究, 2020, 40(2): 217-223. |
[12] | 蔡年辉, 王大玮, 黄文学, 吴俊文, 王军民, 陈诗, 许玉兰, 段安安. 云南松苗木生长与生物量的相关性及通径分析[J]. 植物研究, 2019, 39(6): 853-862. |
[13] | 白晓明, 董实伟, 杨宇宁, 宋跃, 张含国, 李淑娟. 长白落叶松过氧化氢酶LoCAT1基因克隆及表达分析[J]. 植物研究, 2019, 39(4): 539-546. |
[14] | 张秦徽, 王洪武, 姜国云, 沈光, 王连奎, 李焱龙, 王雷, 王立祥, 李月季, 李蕊, 赵曦阳. 红松半同胞家系变异分析及选择研究[J]. 植物研究, 2019, 39(4): 557-567. |
[15] | 栾柯权, 张恒, 田永刚, 杨书成, 王洪武, 王连奎, 李焱龙, 陆志民, 赵曦阳. 不同树龄水曲柳半同胞家系生长性状变异研究[J]. 植物研究, 2019, 39(2): 239-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||