Bulletin of Botanical Research ›› 2023, Vol. 43 ›› Issue (5): 700-710.doi: 10.7525/j.issn.1673-5102.2023.05.007
• Genetic and Breeding • Previous Articles Next Articles
Zhuanzhuan JIANG, Li GONG, Yaling SONG
Received:
2023-01-07
Online:
2023-09-20
Published:
2023-09-05
About author:
JIANG Zhuanzhuan(1991—),female,doctor,engaged in the research of molecular genetics of plant resistance.
Supported by:
CLC Number:
Zhuanzhuan JIANG, Li GONG, Yaling SONG. The Chloroplast Division Protein PARC6 Affected the Growth of Cotyledon and Leaf in Arabidopsis thaliana[J]. Bulletin of Botanical Research, 2023, 43(5): 700-710.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2023.05.007
Table 1
Primer sequences involved in this study
基因名称 Gene name | 引物序列5′→3′ Primer sequence 5′→3′ | |
---|---|---|
PCR引物 PCR primer | SCO2 | F:CTTCTTCCTCCATTTTCGTTACACCT |
SCO2 | R:GTCCATTGTTGAGTTTCACATT | |
PARC6 | LP:TCTCGCACATTAGTTATGGGC | |
PARC6 | RP:ATAGGTCTTAACCTGGCGAGC | |
PARC6 | TP:ATTTTGCCGATTTCGGAAC | |
QPCR引物 QPCR primer | SCO2 | F:AATGGCTTCTTCTTTCACCAATAGTC |
SCO2 | R:GGTGTCTCGAGGTCTGATACATATAAAA | |
PARC6 | F:GTCCTTGATGAATCCATGCTTGTCCAG | |
PARC6 | R:GAAGAGCTTCGATTTCTGCAGCCTCACC | |
ACTIN2 | F:CCCGATGGGCAAGTCATC | |
ACTIN2 | R:GAACAAGACTTCTGGGCATCTGA |
Fig.1
Identification of sco2 and parc6 mutants and expression levelsA.Model of gene structures and DNA mutation sites of sco2. Exons(green),introns (black line),and untranslated regions(white) were indicated;B. henotypes of wild type and sco2 mutant after 8 d;C. Genotyping and PCR analysis of genomic DNA isolated from WT and sco2 mutants,primer positions were indicated in figure A;D.Expression of SCO2 gene in WT and sco2 mutants;E.Model of gene structures and positions of T-DNA in the parc6 mutants.Exons(green),introns(black line),and untranslated regions(white) were indicated;F.Phenotypes of wild type and parc6 mutant after 24 d;G.Genotyping and PCR analysis of genomic DNA isolated from WT and parc6 mutants,primer positions were indicated in figure D;H.Expression of PARC6 gene in WT and parc6 mutants
Fig.5
Effect of different concentrations of sucrose treatment on different linesA.Different lines grew on ?MS medium with different concentrations sucrose after 6 d under normal-light conditions(80 μmol·m2·s-1);B.Chlorophyll fluorescence parameters of different lines grew on different concentrations of sucrose
Fig.7
Analysis of chloroplast thylakoid protein complexA.The thylakoids proteins extracted from 7 d cotyledon of wild type and parc6 mutant and 14 d leaf wild type and parc6 mutant for blue native gel electrophoresis(PSⅡ-SC.PSⅡ super complex;PSⅠ-M.PSⅠ monomer;PSⅡ-D.PSⅡ dimer;LHCⅡ.PSⅡ light-harvesting complex;LHCⅡ-T.PSⅡ light-harvesting complex trimer;LHCⅡ monomer,PSⅡ light-harvesting complex monomer);B.12.5% 2D SDS-PAGE,the red dashed box indicated the photosystem Ⅱ super complex protein
1 | RAVEN J A, ALLEN J F.Genomics and chloroplast evolution: what did cyanobacteria do for plants?[J].Genome Biology,2003,4(3):209. |
2 | POGSON B J, GANGULY D, ALBRECHT-BORTH V.Insights into chloroplast biogenesis and development[J].Biochimica et Biophysica Acta(BBA)-Bioenergetics,2015,1847(9):1017-1024. |
3 | SUMIYA N, FUJIWARA T,ERA A,et al.Chloroplast division checkpoint in eukaryotic algae[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(47):E7629-E7638. |
4 | MIYAGISHIMA S Y.Mechanism of plastid division:from a bacterium to an organelle[J].Plant Physiology,2011,155(4):1533-1544. |
5 | CHEN L, SUN B, GAO W,et al.MCD1 associates with FtsZ filaments via the membrane-tethering protein ARC6 to guide chloroplast division[J].The Plant Cell,2018,30(8):1807-1823. |
6 | ZHANG Y H, ZHANG X C, CUI H S,et al.Residue 49 of AtMinD1 plays a key role in the guidance of chloroplast division by regulating the ARC6-AtMinD1 Interaction[J].Frontiers in Plant Science,2021,12:1-16. |
7 | PORTER K J, CAO L Y, CHEN Y D,et al.The Arabidopsis thaliana chloroplast division protein FtsZ1 counterbalances FtsZ2 filament stability in vitro [J].The Journal of Biological Chemistry,2021,296:100627. |
8 | SUN B, ZHANG Q Y, YUAN H,et al.PDV1 and PDV2 differentially affect remodeling and assembly of the chloroplast DRP5B ring[J].Plant Physiology,2020,182(4):1966-1978. |
9 | OHASHI Y, MORI T, IGAWA T.Behavior of filamentous temperature-sensitive Z2 (FtsZ2) in the male gametophyte during sexual reproduction processes of flowering plants[J].Protoplasma,2020,257(4):1201-1210. |
10 | MIYAGISHIMA S Y, NISHIDA K, MORI T,et al.A plant-specific dynamin-related protein forms a ring at the chloroplast division site[J].The Plant Cell,2003,15(3):655-665. |
11 | OKAZAKI K, KABEYA Y, MIYAGISHIMA S Y.The evolution of the regulatory mechanism of chloroplast division[J].Plant Signaling & Behavior,2010,5(2):164-167. |
12 | ZHANG M, HU Y, JIA J J,et al.CDP1,a novel component of chloroplast division site positioning system in Arabidopsis [J].Cell Research,2009,19(7):877-886. |
13 | GLYNN J M, YANG Y, VITHA S,et al.PARC6,a novel chloroplast division factor,influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis [J].The Plant Journal,2009,59(5):700-711. |
14 | ISHIKAWA H, YASUZAWA M, KOIKE N,et al. Arabidopsis PARC6 is critical for plastid morphogenesis in pavement,trichome,and guard cells in leaf epidermis[J].Frontiers in Plant Science,2020,10:1665. |
15 | CHEN C, CAO L Y, YANG Y,et al.ARC3 activation by PARC6 promotes FtsZ-ring remodeling at the chloroplast division site[J].The Plant Cell,2019,31(4):862-885. |
16 | MECHELA A, SCHWENKERT S, SOLL J.A brief history of thylakoid biogenesis[J].Open Biology,2019,9(1):180237. |
17 | BÖRNER T, ALEYNIKOVA A Y, ZUBO Y O,et al.Chloroplast RNA polymerases:role in chloroplast biogenesis[J].Biochimica et Biophysica Acta (BBA) - Bioenergetics,2015,1847(9):761-769. |
18 | WANG Y N, JIE W G, PENG X Y,et al.Physiological adaptive strategies of oil seed crop ricinus communis early seedlings(cotyledon vs.true leaf) under salt and alkali stresses:from the growth,photosynthesis and chlorophyll fluorescence[J].Frontiers in Plant Science,2019,9:1939. |
19 | ISHIZAKI Y, TSUNOYAMA Y, HATANO K,et al.A nuclear-encoded sigma factor,Arabidopsis SIG6,recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons[J].The Plant Journal,2005,42(2):133-144. |
20 | TANZ S K, KILIAN J, JOHNSSON C,et al.The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LCHB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings[J].The Plant Journal,2012,69(5):743-754. |
21 | ALBRECHT V, INGENFELD A, APEL K.Snowy cotyledon 2:the identification of a zinc finger domain protein essential for chloroplast development in cotyledons but not in true leaves[J].Plant Molecular Biology,2008,66(6):599-608. |
22 | QI Y F, WANG X M, LEI P,et al.The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis [J].The Journal of Biological Chemistry,2020,295(4):1036-1046. |
23 | QI Y F, LIU X Y, LIANG S,et al.A putative chloroplast thylakoid metalloprotease VIRESCENT3 regulates chloroplast development in Arabidopsis thaliana [J].The Journal of Biological Chemistry,2016,291(7):3319-3332. |
24 | JIANG Z Z, ZHU L, WANG Q Y,et al.Autophagy-related 2 regulates chlorophyll degradation under abiotic stress conditions in Arabidopsis [J].International Journal of Molecular Sciences,2020,21(12):4515. |
25 | FU A G, HE Z Y, CHO H S,et al.A chloroplast cyclophilin functions in the assembly and maintenance of photosystem Ⅱ in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(40):15947-15952. |
26 | TAMURA K, STECHER G, KUMAR S.MEGA11:molecular evolutionary genetics analysis version 11[J].Molecular Biology and Evolution,2021,38(7):3022-3027. |
27 | COPE A L, O'MEARA B C, GILCHRIST M A.Gene expression of functionally-related genes coevolves across fungal species:detecting coevolution of gene expression using phylogenetic comparative methods[J].BMC Genomics,2020,21(1):370. |
28 | METEIGNIER L V, GHANDOUR R, MEIERHOFF K,et al.The Arabidopsis mTERF-repeat MDA1 protein plays a dual function in transcription and stabilization of specific chloroplast transcripts within the psbE and ndhH operons[J].New Phytologist,2020,227(5):1376-1391. |
29 | HE Y, SHI Y F, ZHANG X B,et al.The OsABCI7 transporter interacts with OsHCF222 to stabilize the thylakoid membrane in Rice[J].Plant Physiology,2020,184(1):283-299. |
30 | DUTTA S, CRUZ J A, IMRAN S M,et al.Variations in chloroplast movement and chlorophyll fluorescence among chloroplast division mutants under light stress[J].Journal of Experimental Botany,2017,68(13):3541-3555. |
31 | YOSHIDA Y.Insights into the mechanisms of chloroplast division[J].International Journal of Molecular Sciences,2018,19(3):733. |
32 | PIPITONE R, EICKE S, PFISTER B,et al.A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in Arabidopsis [J].eLife,2021,10:e62709. |
33 | SUN T H, ZHOU F, HUANG X Q,et al.Orange represses chloroplast biogenesis in etiolated Arabidopsis cotyledons via interaction with TCP14[J].The Plant Cell,2019,31(12):2996-3014. |
34 | HSIEH W Y, SUNG T Y, WANG H T,et al.Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase[J].Plant Physiology,2014,166(1):57-69. |
35 | WU G Z, XUE H W. Arabidopsis β-ketoacyl-[acyl carrier protein] synthase i is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development[J].The Plant Cell,2010,22(11):3726-3744. |
[1] | Sheng ZHENG, Haixia GAO, Min SU, Shanghuan LU, Tengguo ZHANG, Guofan WU. Exogenous Sucrose Affected AtKEA1 and AtKEA2 to Regulate Root Growth of Seedling in Arabidopsis thaliana [J]. Bulletin of Botanical Research, 2023, 43(4): 562-571. |
[2] | Yuping QIU, Yichuan WANG, Hongwei GUO. Research Progress on the Regulatory Mechanism of Plant Root Hair Development [J]. Bulletin of Botanical Research, 2023, 43(3): 321-332. |
[3] | Yuanyuan CAI, Jibenben XIA, Wenhan YING, Jieyao WANG, Tao XIE, Kongya XING, Xuanjun FENG, Xuejun HUA. Detailed Phenotypical Analysis on the Mutant ssr1-2 Encoding a Mitochondrial Protein of Arabidopsis thaliana [J]. Bulletin of Botanical Research, 2023, 43(3): 421-431. |
[4] | Qin TIAN, Chengyan SHAO, Hanning DUAN, Chenxuan YANG, Lu LI. Morph-anatomy of Leaf and Taxonomic Insights of Eight Viola species from Yunnan,China [J]. Bulletin of Botanical Research, 2023, 43(3): 447-460. |
[5] | Qingsong WU, Yinghui LIU, Shuo LI, Panpan LI, Youmin ZHANG. Anatomical Structure and Ecological Adaptability of Stems and Leaves of Rhamnus ussuriensis [J]. Bulletin of Botanical Research, 2023, 43(3): 461-469. |
[6] | Tingting LI, Liu YANG, Xiaoxia LI, Yisong WANG, Xiuwei WANG. Different Nitrogen Forms on the Photosynthetic Characteristics and Growth of Fraxinus mandshurica and Quercus mongolica [J]. Bulletin of Botanical Research, 2023, 43(2): 207-217. |
[7] | Yang LIU, Liying XU, Tongchao WEI, Lanyi SHEN, Dounan LIU, Yue LIU. Response of Leaf Functional Traits and their relationships to Seasonal Changes in Four Acer Species [J]. Bulletin of Botanical Research, 2023, 43(2): 242-250. |
[8] | Jun SUN, Guisheng LI. Sequencing and Analysis of miRNAs in Vegetative and Reproductive Growths of Ceratopteris pteridoides [J]. Bulletin of Botanical Research, 2022, 42(6): 1014-1022. |
[9] | Mengqiao GUO, Xuanyu CHEN, Senrong HONG, Jiao LI, Jie FAN, Xinyu CHENG. The Correlation Between Leaf Phenotype Diversity and Total Flavonoids Content of Overground Part of Tetrastigma hemsleyanum Diels & Gilg [J]. Bulletin of Botanical Research, 2022, 42(5): 876-885. |
[10] | Bin WEI, Yi LI, Shiping SU. The Effect of Exogenous Proline on the Stomata of Nitraria tangutorum Leaves under Natural Drought [J]. Bulletin of Botanical Research, 2022, 42(3): 492-501. |
[11] | Kailin Zhu, Jiabao Li, Xin Chen. Leaf Anatomical Characteristics and Environmental Adaptability of Seven Sorbus Species at Longcanggou National Forest Park [J]. Bulletin of Botanical Research, 2022, 42(2): 174-183. |
[12] | Mengjiao Wang, Yuxue Cao, Yongsheng Xu, Fenge Ding, Qiao Su. Overexpression of Marine Microbial Metagenomic MbCSP Enhanced Drought and Cold Tolerance of Transgenic Arabidopsisthaliana [J]. Bulletin of Botanical Research, 2022, 42(2): 243-251. |
[13] | Fei Wang, Shujiang Guo, Baoli Fan, Fugui Han, Fanglin Wang, Weixing Zhang, Yunian Zhang. Plant Leaf Traits in Minqin Oasis-desert Transition Zone [J]. Bulletin of Botanical Research, 2022, 42(1): 71-80. |
[14] | Li-Qiong ZHU, Dong-Mei QIN, Li-Jun ZHAO, Bin-Sheng DENG, Sheng-Yuan LIU, Chang-Jie JIANG. Leaf Epidermal Micromorphological Features and Their Systematic Significance of Six Wild Speciesof Camellia chrysantha [J]. Bulletin of Botanical Research, 2021, 41(6): 841-850. |
[15] | Jie ZHANG, Rong-Rong LI, Jing-Xiang MENG, Yong ZHANG, Chong-Lu ZHONG. Phenotypic Variation and Genetic Diversity of Leaves Traits of Tabebuia and Handroanthus(Bignoniaceace) in China [J]. Bulletin of Botanical Research, 2021, 41(6): 851-861. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||