1. Dittrich H,Kutchan T M. Molecular cloning,expression,and induction of berberine bridge enzyme,an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(22):9969-9973. 2. Gaweska H M,Roberts K M,Fitzpatrick P F. Isotope effects suggest a stepwise mechanism for berberine bridge enzyme[J]. Biochemistry,2012,51(37):7342-7347. 3. Dzink J L,Socransky S S. Comparative in vitro activity of sanguinarine against oral microbial isolates[J]. Antimicrobial Agents and Chemotherapy,1985,27(4):663-665. 4. Cline S D,Coscia C J. Stimulation of sanguinarine production by combined fungal elicitation and hormonal deprivation in cell suspension cultures of Papaver bracteatum[J]. Plant Physiology,1988,86(1):161-165. 5. Schumacher H M,Gundlach H,Fiedler F,et al. Elicitation of benzophenanthridine alkaloid synthesis in Eschscholtzia cell cultures[J]. Plant Cell Reports,1987,6(6):410-413. 6. Eilert U,Kurz W G W,Constabel F. Stimulation of sanguinarine accumulation in Papaver somniferum cell cultures by fungal elicitors[J]. Journal of Plant Physiology,1985,119(1):65-76. 7. Facchini P J,Penzes C,Johnson A G,et al. Molecular characterization of berberine bridge enzyme genes from opium poppy[J]. Plant Physiology,1996,112(4):1669-1677. 8. Backhaus R A. Rubber formation in plants-a mini-review[J]. Israel Journal of Botany,1985,34(2-4):283-293. 9. Tang C R,Yang M,Fang Y F,et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants,2016,2(6):16073. 10. Ayutthaya S I N,Do F C. Rubber trees affected by necrotic tapping panel dryness exhibit poor transpiration regulation under atmospheric drought[J]. Advanced Materials Research,2014,844:3-6. 11. Thomas M,Sumesh K V,Sreelatha S,et al. Biochemical evaluation of RRⅡ 400 series clones of Hevea brasiliensis for drought tolerance[J]. Indian Journal of Agricultural Biochemistry,2014,27(1):35-39. 12. Coupe M,Chrestin H. The hormonal stimulation of latex yield:physico-chemical and biochemical mechanisms of hormonal(ethylene) stimulation[M].//D'auzac J,Jacob J L,Chrestin H. Physiology of Rubber Tree Latex. Boca Raton,FL:CRC Press,1989:295-319. 13. Pujade-Renaud V,Clement A,Perrot-Rechenmann C,et al. Ethylene-induced increase in glutamine synthetase activity and mRNA levels in Hevea brasiliensis latex cells[J]. Plant Physiology,1994,105(1):127-132. 14. Liu J P,Zhuang Y F,Guo X L,et al. Molecular mechanism of ethylene stimulation of latex yield in rubber tree(Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis[J]. BMC Genomics,2016,17:257. 15. Wang L F,Wang M,Zhang Y. Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree[J]. Tropical Plant Pathology,2014,39(3):242-250. 16. Lee G I,Howe G A. The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression[J]. The Plant Journal,2003,33(3):567-576. 17. Wang L F. Physiological and molecular responses to drought stress in rubber tree(Hevea brasiliensis Muell. Arg.)[J]. Plant Physiology and Biochemistry,2014,83:243-249. 18. Wang L F. Physiological and molecular responses to variation of light intensity in rubber Tree(Hevea brasiliensis Muell. Arg.)[J]. PLoS One,2014,9(2):e89514. 19. Qin B,Zheng F C,Zhang Y. Molecular cloning and characterization of a Mlo gene in rubber tree(Hevea brasiliensis)[J]. Journal of Plant Physiology,2015,175:78-85. 20. Schmittgen T D,Livak K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nature Protocols,2008,3(6):1101-1108. 21. Hauschild K,Pauli H H,Kutchan T M. Isolation and analysis of a gene bbe1 encoding the berberine bridge enzyme from the California poppy Eschscholzia californica[J]. Plant Molecular Biology,1998,36(3):473-478. 22. Minami H,Kim J S,Ikezawa N,et al. Microbial production of plant benzylisoquinoline alkaloids[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(21):7393-7398. 23. Broekaert W,Lee H I,Kush A,et al. Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree(Hevea brasiliensis)[J]. Proceedings of the National Academy of Sciences of the United States of America,1990,87(19):7633-7637. 24. Chye M L,Cheung K Y. β-1,3-Glucanase is highly-expressed in laticifers of Hevea brasiliensis[J]. Plant Molecular Biology,1995,29(2):397-402. 25. Long X Y,He B,Fang Y J,et al. Identification and characterization of the Glucose-6-Phosphate dehydrogenase gene family in the para rubber tree,Hevea brasiliensis[J]. Frontiers in Plant Science,2016,7:215. 26. Alam B,Nair D B,Jacob J. Low temperature stress modifies the photochemical efficiency of a tropical tree species Hevea brasiliensis:effects of varying concentration of CO2 and photon flux density[J]. Photosynthetica,2005,43(2):247-252. 27. Li X,Bi Z H,Di R,et al. Identification of powdery mildew responsive genes in Hevea brasiliensis through mRNA differential display[J]. International Journal of Molecular Sciences,2016,17(2):181. 28. Bokma E,Van Koningsvelda G A,Jeronimus-Stratinghb M,et al. Hevamine,a chitinase from the rubber tree Hevea brasiliensis,cleaves peptidoglycan between the C-1 of N-acetylglucosamine and C-4 of N-acetylmuramic acid and therefore is not a lysozyme[J]. FEBS Letters,1997,411(2-3):161-163. 29. Bokma E,Barends T,Van Scheltinga A C T,et al. Enzyme kinetics of hevamine,a chitinase from the rubber tree Hevea brasiliensis[J]. FEBS Letters,2000,478(1-2):119-122. 30. Chow K S,Wan W L,Isa M N M,et al. Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex[J]. Journal of Experimental Botany,2007,58(10):2429-2440. 31. Wang X C,Shi M J,Wang D,et al. Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis[J]. Journal of Proteome Research,2013,12(11):5146-5159. 32. Bari R,Jones J D. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology,2009,69(4):473-488. 33. Nakashima K,Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports,2013,32(7):959-970. 34. Kajikawa M,Shoji T,Kato A,et al. Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco[J]. Plant Physiology,2011,155(4):2010-2022. 35. Kutchan T M,Dittrich H. Characterization and mechanism of the berberine bridge enzyme,a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants[J]. Journal of Biological Chemistry,1995,270(41):24475-24481. 36. Daniel B,Pavkov-Keller T,Steiner B,et al. Oxidation of monolignols by members of the berberine bridge enzyme family suggests a role in plant cell wall metabolism[J]. Journal of Biological Chemistry,2015,290(30):18770-18781. |