Bulletin of Botanical Research ›› 2023, Vol. 43 ›› Issue (5): 657-666.doi: 10.7525/j.issn.1673-5102.2023.05.003
• Genetic and Breeding • Previous Articles Next Articles
Luhua ZHOU1,2, Junyi FANG1,2, Zimo XIONG1, Weifeng WU1, Jiarui LIU1,2, Qiao LU3, Hongqing LING3, Danyu KONG1,2
Received:
2023-05-19
Online:
2023-09-20
Published:
2023-09-05
About author:
ZHOU Luhua(1995—),female,Master candidate,major in plant molecular genetics.
Supported by:
CLC Number:
Luhua ZHOU, Junyi FANG, Zimo XIONG, Weifeng WU, Jiarui LIU, Qiao LU, Hongqing LING, Danyu KONG. Evaluation on Waterlogging Tolerance of Different Tomato Germplasm[J]. Bulletin of Botanical Research, 2023, 43(5): 657-666.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2023.05.003
Table 1
Information on 50 tomato varieties
编号 Code | 类别 Type | 来源地 Origin |
---|---|---|
TK008 | 醋栗番茄 S. pimpinellifolium | 南美洲 South America |
TK056 | 醋栗番茄 S. pimpinellifolium | 南美洲 South America |
TK078 | 醋栗番茄 S. pimpinellifolium | N/A |
TK115 | 醋栗番茄 S. pimpinellifolium | 南美洲 South America |
TK009 | 醋栗番茄 S. pimpinellifolium | N/A |
TK055 | 醋栗番茄 S. pimpinellifolium | 南美洲 South America |
TK110 | 醋栗番茄 S. pimpinellifolium | 南美洲 South America |
TK112 | 醋栗番茄 S. pimpinellifolium | 南美洲 South America |
TK007 | 醋栗番茄 S. pimpinellifolium | 南美洲 South America |
TK026 | 番茄 S. lycopersicum | 南美洲 South America |
TK048 | 番茄 S. lycopersicum | 欧洲 Europe |
TK070 | 番茄 S. lycopersicum | 欧洲 Europe |
TK072 | 番茄 S. lycopersicum | 北美洲 North America |
TK084 | 番茄 S. lycopersicum | 北美洲 North America |
TK085 | 番茄 S. lycopersicum | 南美洲 South America |
TK127 | 番茄 S. lycopersicum | 北美洲 North America |
TK134 | 番茄 S. lycopersicum | 北美洲 North America |
TK142 | 番茄 S. lycopersicum | 北美洲 North America |
TK148 | 番茄 S. lycopersicum | 北美洲 North America |
TK266 | 番茄 S. lycopersicum | 北美洲 North America |
TK300 | 番茄 S. lycopersicum | N/A |
TK302 | 番茄 S. lycopersicum | N/A |
TK303 | 番茄 S. lycopersicum | N/A |
TK064 | 番茄 S. lycopersicum | 非洲 Africa |
TK041 | 番茄 S. lycopersicum | N/A |
TK412 | 番茄 S. lycopersicum | 欧洲 Europe |
TK146 | 番茄 S. lycopersicum | N/A |
TK029 | 番茄 S. lycopersicum | 欧洲 Europe |
TK062 | 番茄 S. lycopersicum | 亚洲 Asia |
TK065 | 番茄 S. lycopersicum | 欧洲 Europe |
TK068 | 番茄 S. lycopersicum | 北美洲 North America |
TK265 | 番茄 S. lycopersicum | N/A |
TK413 | 番茄 S. lycopersicum | N/A |
TK003 | 番茄 S. lycopersicum | N/A |
TK039 | 樱桃番茄 S. lycopersicum var. cerasiforme | N/A |
TK047 | 樱桃番茄 S. lycopersicum var. cerasiforme | 南美洲 South America |
TK066 | 樱桃番茄 S. lycopersicum var. cerasiforme | 南美洲 South America |
TK069 | 樱桃番茄 S. lycopersicum var. cerasiforme | 亚洲 Asia |
TK105 | 樱桃番茄 S. lycopersicum var. cerasiforme | 南美洲 South America |
TK106 | 樱桃番茄 S. lycopersicum var. cerasiforme | 南美洲 South America |
TK107 | 樱桃番茄 S. lycopersicum var. cerasiforme | 南美洲 South America |
TK135 | 樱桃番茄 S. lycopersicum var. cerasiforme | 欧洲 Europe |
TK141 | 樱桃番茄 S. lycopersicum var. cerasiforme | 欧洲 Europe |
TK300 | 樱桃番茄 S. lycopersicum var. cerasiforme | N/A |
TK017 | 樱桃番茄 S. lycopersicum var. cerasiforme | 南美洲 South America |
TK022 | 樱桃番茄 S. lycopersicum var. cerasiforme | 欧洲 Europe |
TK024 | 樱桃番茄 S. lycopersicum var. cerasiforme | N/A |
TK300 | 樱桃番茄 S. lycopersicum var. cerasiforme | N/A |
TK304 | 樱桃番茄 S. lycopersicum var. cerasiforme | N/A |
TK037 | 樱桃番茄 S. lycopersicum var. cerasiforme | 南美洲 South America |
Table 2
Types of waterlogging tolerance of 50 tomato germplasm
类别 Type | 番茄 S. lycopersicum | 樱桃番茄 S. lycopersicum var. cerasiforme | 醋栗番茄 S. pimpinellifolium |
---|---|---|---|
耐涝型 flooding tolerance type | 5种(5 species) | 5种(5 species) | 2种(2 species) |
中间型 Intermediate type | 4种(4 species) | 0种(0 species) | 2种(2 species) |
淹水敏感型 flooding sensitive type | 16种(16 species) | 11种(11 species) | 5种(5 species) |
1 | 杨兴云,乔丹丹,张雅洁,等.鸭茅响应水淹胁迫的miRNA差异表达分析[J].草业学报,2022,31(6): 150-162. |
YANG X Y, QIAO D D, ZHANG Y J,et al.A differential gene expression analysis of miRNA in dactylis glomerata in response to flooding stress[J].Acta Prataculturae Sinica,2022,31(6):150-162. | |
2 | ABIKO T, KOTULA L, SHIONO K,et al.Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp.mays)[J].Plant,Cell & Environment,2012,35(9):1618-1630. |
3 | BAILEY-SERRES J, LEE S C, BRINTON E.Waterproofing crops:effective flooding survival strategies[J].Plant Physiology,2012,160(4):1698-1709. |
4 | BOULANGE J, HANASAKI N, YAMAZAKI D,et al.Role of dams in reducing global flood exposure under climate change[J].Nature Communication,2021,12(1):417. |
5 | BAILEY-SERRES J, VOESENEK L A C J.Flooding stress:acclimations and genetic diversity[J].Annual Review of Plant Biology,2008,59:313-339. |
6 | NAGAI K, MORI Y, ISHIKAWA S,et al.Antagonistic regulation of the gibberellic acid response during stem growth in rice[J].Nature,2020,584(7819):109-114. |
7 | NAGAI K, HATTORI Y, ASHIKARI M.Stunt or elongate? Two opposite strategies by which rice adapts to floods[J].Journal of Plant Research,2010,123(3):303-309. |
8 | NIROULA R K, PUCCIARIELLO C, HO V T,et al.SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species[J].The Plant Journal,2012,72(2):282-293. |
9 | COLLARD B C Y, SEPTININGSIH E M, DAS S R,et al.Developing new flood-tolerant varieties at the international rice research institute(IRRI)[J].SABRAO Journal of Breeding and Genetics,2013,45(1):42-56. |
10 | JIA W T, MA M H, CHEN J L,et al.Plant morphological,physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms[J].International Journal of Molecular Sciences,2021,22(3):1088. |
11 | STEFFENS B, RASMUSSEN A.The physiology of adventitious roots[J].Plant Physiology,2016,170(2):603-617. |
12 | SAUTER M.Root responses to flooding[J].Current Opinion in Plant Biology,2013,16(3):282-286. |
13 | YAMAUCHI T, TANAKA A, TSUTSUMI N,et al.A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots[J].Plants(Basel),2020,9(5):610 |
14 | BLOKHINA O, FAGERSTEDT K V.Oxidative metabolism,ROS and NO under oxygen deprivation[J].Plant Physiology and Biochemistry,2010,48(5):359-373. |
15 | CHOUDHURY F K, RIVERO R M, BLUMWALD E,et al.Reactive oxygen species,abiotic stress and stress combination[J].The Plant Journal,2017,90(5):856-867. |
16 | SASIDHARAN R, HARTMAN S, LIU Z G,et al.Signal dynamics and interactions during flooding stress[J].Plant Physiology,2018,176(2):1106-1117. |
17 | APEL K, HIRT H.Reactive oxygen species:metabolism,oxidative stress,and signal transduction[J].Annual Review of Plant Biology,2004,55:373-399. |
18 | 尹婷辉,林瑞君,孙林,等.华南22种园林植物耐涝性筛选[J].浙江林业科技,2022,42(1):31-40. |
YIN T H, LIN R J, SUN L,et al.Experiment on waterlogging stress of 22 garden plant species in Shenzhen[J].Journal of Zhejiang Forestry Science and Technology,2022,42(1):31-40. | |
19 | SASIDHARAN R, VOESENEK L A C J.Ethylene-mediated acclimations to flooding stress[J].Plant Physiology,2015,169(1):3-12. |
20 | 姜玉萍,郝婷,张兆辉,等.淹水对不同蔬菜生长和光合作用的影响[J].上海农业学报,2013,29(5):97-100. |
JIANG Y P, HAO T, ZHANG Z H,et al.Effects of waterlogging on growth and photosynthesis of 3 vegetable crops[J].Acta Agriculturae Shanghai,2013,29(5):97-100. | |
21 | 刘聪聪,兰超杰,李欢,等.樱桃番茄苗期对淹水胁迫的响应及其耐涝性评价[J].核农学报,2020,34(3):650-660. |
LIU C C, LAN C J, LI H,et al.Responses of waterlogging stress and evaluation of waterlogging tolerance in cherry tomato at seedling stage[J].Journal of Nuclear Agricultural Sciences,2020,34(3):650-660. | |
22 | 郑积荣,汪炳良,王慧俐.番茄多茸毛性状的遗传研究及其利用价值[J].江西农业学报,2010,22(6):61-64. |
ZHENG J R, WANG B L, WANG H L.Study on inheritance of hairy trait of tomato and its value in tomato breeding[J].Acta Agriculturae Jiangxi,2010,22(6):61-64. | |
23 | WU J Q, CHENG J, XU C M,et al.AUREA maintains the balance between chlorophyll synthesis and adventitious root formation in tomato[J].Horticulture Research,2020,7(1):166. |
24 | RASHEED R, IQBAL M, ASHRAF M A,et al.Glycine betaine counteracts the inhibitory effects of waterlogging on growth,photosynthetic pigments,oxidative defence system,nutrient composition,and fruit quality in tomato[J].The Journal of Horticultural Science and Biotechnology,2018,93(4):385-391. |
25 | HARTMAN S, VAN DONGEN N, RENNEBERG D M H J,et al.Ethylene differentially modulates hypoxia responses and tolerance across solanum species[J].Plants,2020,9(8):1022. |
26 | KLAY I, GOUIA S, LIU M C,et al.Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants[J].Plant Science,2018,274:137-145. |
27 | 张小莉,王鹏程,宋纯鹏.植物细胞过氧化氢的测定方法[J].植物学报,2009,44(1):103-106. |
ZHANG X L, WANG P C, SONG C P.Methods of detecting hydrogen peroxide in plant cells[J].Chinese Bulletin of Botany,2009,44(1):103-106. | |
28 | 聂功平,陈敏敏,杨柳燕,等.植物响应淹水胁迫的研究进展[J].中国农学通报,2021,37(18):57-64. |
NIE G P, CHEN M M, YANG L Y,et al.Plant response to waterlogging stress:research progress[J].Chinese Agricultural Science Bulletin,2021,37(18):57-64. | |
29 | COLMER T D, VOESENEK L A C J.Flooding tolerance:suites of plant traits in variable environments[J].Functional Plant Biology,2009,36(8):665-681. |
30 | VOESENEK L A C J, BAILEY-SERRES J.Flood adaptive traits and processes:an overview[J].New Phytologist,2015,206(1):57-73. |
31 | JIA L T, QIN X, LYU D G,et al.ROS production and scavenging in three cherry rootstocks under short-term waterlogging conditions[J].Scientia Horticulturae,2019,257:108647. |
32 | 常二梅,史胜青,刘建锋,等.古侧柏针叶活性氧产生及其清除机制[J].东北林业大学学报,2011,39(11):8-11. |
CHANG E M, SHI S Q, LIU J F,et al.ROS production and its elimination in old platycladus orientalis’s leaves[J].Journal of Northeast Forestry University,2011,39(11):8-11. | |
33 | 李博书,陈晶,杨亮,等.干旱胁迫对不同生育时期大豆叶片抗氧化酶活性的影响[J].大豆科技,2022(3):12-17. |
LI B S, CHEN J, YANG L,et al.Effects of drought stress on antioxidant enzymes activities in soybean leaves at different growth stages[J].Soybean Science & Technology,2022(3):12-17. | |
34 | 刘聪聪,兰超杰,李欢,等.淹水胁迫及恢复对樱桃番茄苗期根系和叶片细胞膜稳定性的影响[J].灌溉排水学报,2022,41(9):61-70. |
LIU C C, LAN C J, LI H,et al.Effects of flooding stress and recovery on root and leaf cell membrane stability at cherry tomato seedlings[J].Journal of Irrigation and Drainage,2022,41(9):61-70. | |
35 | 刘江,李明倩,常峻菲,等.干旱胁迫及复水对大豆关键生育时期叶片生理特性的影响[J].中国农业气象,2022,43(8):622-632. |
LIU J, LI M Q, CHANG J F,et al.Physiological characteristics of soybean leaves at different growth stages[J].Chinese Journal of Agrometeorology,2022,43(8):622-632. |
[1] | Chaoran SHAN, Xiaohu CHEN, Yunfei DING, Wei ZHAO, Han LU, Shangzhu GAO, Fenghui QI, Yaguang ZHAN, Fansuo ZENG. Functional Analysis of FmCCoAOMT Gene in Fraxinus mandshurica During Lignin Synthesis and Abiotic Stress [J]. Bulletin of Botanical Research, 2023, 43(5): 768-778. |
[2] | Bi QIN, Xiaoxiao WANG, Yushuang YANG, Qiuhai NIE, Qiuhui CHEN, Shizhong LIU. Identification and Expression Pattern Analysis of TkAPC10 in Taraxacum kok-saghyz Rodin [J]. Bulletin of Botanical Research, 2022, 42(5): 830-839. |
[3] | Xueying WANG, Ruiqi WANG, Yang ZHANG, Cong LIU, Dean XIA, Zhigang WEI. Genome‑wide Identification and Stress Response Analysis of Cyclic Nucleotide-gated Channels(CNGC) Gene Family in Populus trichocarpa [J]. Bulletin of Botanical Research, 2022, 42(4): 613-625. |
[4] | Bo-Chao ZHANG, Jia-Lin WANG, Yuan YIN, Yi-Da CHE, Jun-Jie DENG, Rong-Shu ZHANG. Tissue Expression Patterns of PdPapWRKY51 in Shanxin Poplar (Populus davidiana × P. alba var. pyramidlis) under Stress Conditions [J]. Bulletin of Botanical Research, 2021, 41(6): 911-920. |
[5] | Xiao-Xiao WANG, Bi QIN, Yu-Shuang YANG, Qiu-Hai NIE, Ji-Chuan ZHANG, Shi-Zhong LIU. Cloning and Expression Analysis of E2 Ubiquitin-conjugating Enzyme Gene TkUBC2 in Taraxacum kok-saghyz Rodin [J]. Bulletin of Botanical Research, 2021, 41(1): 98-106. |
[6] | JIANG Cheng, ZHANG Xi, TIAN Qing, LI Li. Isolation of the BpbHLH112 Gene and Expression Analysis of Its Promoter in Betula platyphylla [J]. Bulletin of Botanical Research, 2020, 40(4): 583-592. |
[7] | MA Miao-Miao, LI Cheng-Hao, LIU Xiao, ZHANG Xin, YANG Jing-Li. Cloning and Bioinformatics Analysis of LoERF017 Gene from Larix kaempferi [J]. Bulletin of Botanical Research, 2020, 40(4): 602-612. |
[8] | ZHANG Yu-Qing, LIU Ye, QU Chun-Pu, LIU Guan-Jun, YANG Tian-Tian, YANG Cheng-Jun. Resistance Analysis of Transgenic PnDof30 Arabidopsis under Abiotic Stress [J]. Bulletin of Botanical Research, 2020, 40(3): 407-415. |
[9] | LIU Jia-Li, HE Ming-Liang, LIU Chen-Xi, LIAO Xu, LI Xiu-Feng, GUAN Qing-Jie. Zinc Finger Protein OsZFP6 Expression Features and Functions in Saline-alkali Stress Response [J]. Bulletin of Botanical Research, 2020, 40(3): 424-432. |
[10] | LI Ya-Bo, Lü Jia-Xin, TAN Bing, GAO Cai-Qiu. Cloning and expression analysis of 5 ZFP genes from Poplus trichocarpa [J]. Bulletin of Botanical Research, 2020, 40(2): 243-250. |
[11] | QIN Lin-Lin, ZHANG Xi, JIANG Cheng, LI Li. Cloning and Functional Analysis of BpZFP4 Promoter from Birch(Betula platyphylla) [J]. Bulletin of Botanical Research, 2019, 39(6): 917-926. |
[12] | WANG Heng-Tao, SHAO Wan-Xuan, XU Shu-Hao, ZENG Fan-Suo. Cloning and Expression Pattern Analysis of MUR5 Gene in Fraxinus mandshurica [J]. Bulletin of Botanical Research, 2018, 38(6): 913-920. |
[13] | GE Xiao-Lan, LIU Cai-Xia, ZHANG Xin-Xin, LI Ying, QU Guan-Zheng. Construction and Functional Verification of Plant Expression Vector of Tamarix ThDUF106 Gene [J]. Bulletin of Botanical Research, 2018, 38(2): 260-267. |
[14] | GONG Dao-Yong, HU Shang-Lian, CAO Ying, LU Xue-Qin, ZHANG Qing-Bo. Cloning and Bioinformatics Analysis of Two bZIP Genes of Bambusa emeiensis and Their Induced Expression under Abiotic Stresses [J]. Bulletin of Botanical Research, 2018, 38(2): 268-277. |
[15] | ZHANG Xue-Mei, YAO Wen-Jing, ZHAO Kai, JIANG Ting-Bo, ZHOU Bo-Ru. Bioinformatics and Response to Salt Stress Analysis of the HD-Zip Transcription Factor Family in Populus simonii×P.nigra [J]. Bulletin of Botanical Research, 2017, 37(5): 715-721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||