1. Qin F,Shinozaki K,Yamaguchi-Shinozaki K.Achievements and challenges in understanding plant abiotic stress responses and tolerance[J].Plant and Cell Physiology,2011,52(9):1569-1582.
2. Boyer J S.Plant productivity and environment[J].Science,1982,218(4571):443-448.
3. Endler A,Kesten C,Schneider R,et al.A mechanism for sustained cellulose synthesis during salt stress[J].Cell,2015,162(6):1353-1364.
4. Boudsocq M,Barbier-Brygoo H,Laurière C.Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J].The Journal of Biological Chemistry,2004,279(40):41758-41766.
5. Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2005,60(3):324-349.
6. Li Y,Liu P P,Takano T,et al.A chloroplast-localized rubredoxin family protein gene from Puccinellia tenuiflora(PutRUB) increases NaCl and NaHCO3 tolerance by decreasing H2O2 accumulation[J].International Journal of Molecular Sciences,2016,17(6):804.
7. 张国军.盐胁迫对4种景天幼苗水势、荧光效率、丙二醛的影响[J].农业科技与装备,2012(7):3-6. Zhang G J.Effect of salt stress on the water potential,fluorescence efficiency,malonaldehyde of four stonecrop seedlings[J].Agricultural Science & Technology and Equipment,2012(7):3-6.
8. Liu J,Guo W Q,Shi D C.Seed germination,seedling survival,and physiological response of sunflowers under saline and alkaline conditions[J].Photosynthetica,2010,48(2):278-286.
9. 刘铎,丛日春,党宏忠,等.柳树幼苗渗透调节物质对中、碱性钠盐响应的差异性[J].生态环境学报,2014,23(9):1531-1535. Liu D,Cong R C,Dang H Z,et al.Comparative effects of salt and alkali stresses on plant physiology of willow[J].Ecology and Environmental Sciences,2014,23(9):1531-1535.
10. Zhu J K.Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247-273.
11. Zhu J H,Lee B H,Dellinger M,et al.A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis[J].The Plant Journal,2010,63(1):128-140.
12. Guo L Q,Shi D C,Wang D L.The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere[J].Journal of Agronomy and Crop Science,2010,196(2):123-135.
13. Rosegrant M W,Cline S A.Global food security:challenges and policies[J].Science,2003,302(5652):1917-1919.
14. Guo L Q,Shi D C,Wang D L.The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere.J.Agron.Crop Sci,2010,196:123-135.
15. 邹原东,范继红.有机肥施用对土壤肥力影响的研究进展[J].中国农学通报,2013,29(3):12-16. Zou Y D,Fan J H.Review on effect of organic fertilizer on soil fertility[J].Chinese Agricultural Science Bulletin,2013,29(3):12-16.
16. Mishra A,Jha B.Antioxidant response of the microalga Dunaliella salina under salt stress[J].Botanica Marina,2011,54(2):195-199.
17. Sairam R K,Rao K V,Srivastava G C.Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress,antioxidant activity and osmolyte concentration[J].Plant Science,2002,163(5):1037-1046.
18. Jaoudé R A,De Dato G,De Angelis P.Photosynthetic and wood anatomical responses of Tamarix africana Poiret to water level reduction after short-term fresh-and saline-water flooding[J].Ecological Research,2012,27(5):857-866.
19. Gries D,Zeng F,Foetzki A,et al.Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J].Plant,Cell & Environment,2003,26(5):725-736.
20. Goodacre N F,Gerloff D L,Uetz P.Protein domains of unknown function are essential in bacteria[M].Bio,2013,5(1):e00744-13.
21. Cleverly J R,Smith S D,Sala A,et al.Invasive capacity of Tamarix ramosissima in a Mojave desert floodplain:the role of drought[J].Oecologia,1997,111(1):12-18.
22. De Baets S,Poesen J,Reubens B,et al.Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength[J].Plant and Soil,2008,305(1-2):207-226.
23. Ma Q L,Wang J H,Li X R,et al.Long-term changes of Tamarix vegetation in the oasis-desert ecotone and its driving factors:implication for dryland management[J].Environmental Earth Sciences,2009,59(4):765-774.
24. Grisafi F,Oddo E,Gargano M L,et al.Tamarix arborea var.arborea and Tamarix parviflora:Two species valued for their adaptability to stress conditions[J].Acta Biol Hung,2016,67(1):42-52.
25. Farghaly F A,Radi A A,Abdel-Wahab D A,et al.Effect of salinity and sodicity stresses on physiological response and productivity in Helianthus annuus[J].Acta Biologica Hungarica,2016,67(2):184-194.
26. Kadukova J,Manousaki E,Kalogerakis N.Pb and Cd accumulation and phyto-excretion by salt cedar(Tamarix smyrnensis Bunge)[J].International Journal of Phytoremediation,2008,10(1):31-46.
27. Moreno-Jiménez E,Vázquez S,Carpena-Ruiz R O,et al.Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain:a field experiment[J].Journal of Environmental Management,2011,92(6):1584-1590.
28. Luo C,Guo C,Wang W,et al.Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice[J].Plant Cell Rep,2014,33(2):323-336. |