Bulletin of Botanical Research ›› 2024, Vol. 44 ›› Issue (2): 289-297.doi: 10.7525/j.issn.1673-5102.2024.02.014
• Physiology and Ecology • Previous Articles Next Articles
Qianlin LI1,2, Minggang GUO1,2, Jiayin LI1,2, Xiali GUO1,2(), Jianguo HUANG3, Lin CHEN4, Xuebin LI4
Received:
2023-08-03
Online:
2024-03-20
Published:
2024-03-11
Contact:
Xiali GUO
E-mail:guoxl6666@hotmail.com
CLC Number:
Qianlin LI, Minggang GUO, Jiayin LI, Xiali GUO, Jianguo HUANG, Lin CHEN, Xuebin LI. Effects of Temperature and Precipitation on Intra-Annual Xylem Growth of Quercus mongolica in Liupan Mountain Nature Reserve, China[J]. Bulletin of Botanical Research, 2024, 44(2): 289-297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2024.02.014
Table 2
Gompertz fitting parameters of intra-annual xylem growth dynamics of Q. mongolica in 2019 and 2020
年份 Year | 树木编号 Tree number | A | β | κ | R2 | 木质部生长 开始时间 Onset of xylem growth(DOY) | 木质部生长 结束时间 Cessation of xylem growth(DOY) | 生长季节长度 Duration/d | 最大生长速率 出现时间 Day of maximum growth rate(DOY) | 第一个导管 出现时间 Day of the first vessel appearance(DOY) | 第一个导管 成熟时间 Day of the first vessel lignification(DOY) |
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 1 | 2 268.44 | 3.13 | 0.02 | 0.94 | 104 | 266 | 162 | 153 | 91 | 116 |
2 | 1 465.54 | 3.63 | 0.03 | 0.84 | 94 | 259 | 165 | 146 | 97 | 116 | |
3 | 1 494.05 | 2.77 | 0.02 | 0.98 | 88 | 289 | 201 | 170 | 100 | 116 | |
4 | 963.73 | 2.65 | 0.02 | 0.89 | 84 | 264 | 180 | 139 | 106 | 122 | |
2020 | 1 | 1 555.37 | 3.61 | 0.02 | 0.93 | 104 | 262 | 158 | 151 | 97 | 124 |
2 | 2 404.10 | 2.97 | 0.02 | 0.94 | 96 | 293 | 197 | 181 | 103 | 121 | |
3 | 904.05 | 4.04 | 0.03 | 0.92 | 101 | 247 | 146 | 134 | 97 | 121 | |
4 | 1 120.18 | 3.90 | 0.03 | 0.89 | 92 | 237 | 145 | 135 | 91 | 115 |
Table 3
Parameters of xylem growth of Q. mongolica. in 2019 and 2020
监测年份 Year | 木质部生长 开始时间 Onset of xylem growth(DOY) | 木质部生长 结束时间 Cessation of xylem growth(DOY) | 生长季长度 Duration/d | 年生长量 Annual growth/μm | 最大生长速率 出现时间 Day of maximum growth rate(DOY) | 第一个导管 出现日期 Day of the first vessel appearance(DOY) | 第一个导管 木质化日期 Day of the first vessel lignification(DOY) |
---|---|---|---|---|---|---|---|
2019 | 92±8 | 269±13 | 177±18 | 1 547.9±538.6 | 152±13 | 99±6 | 118±3 |
2020 | 98±5 | 259±24 | 162±24 | 1 495.9±663.2 | 161±22 | 97±5 | 120±4 |
Table 4
Effects of climatic factors on xylem growth rate of Q. mongolica
气候因子 Climatic factors | 变量 Variables | 估计值 Estimate | 标准误差 standard error | t | P |
---|---|---|---|---|---|
温度 Temperature | 截距Intercept | -6.318 | 10.390 | -0.608 | 0.554 |
T7,max | 2.816 | 0.414 | 6.797 | 0.000 | |
截距Intercept | 4.314 | 8.902 | 0.485 | 0.642 | |
T7,mean | 3.046 | 0.412 | 7.386 | 0.000 | |
截距Intercept | 18.757 | 7.913 | 2.371 | 0.067 | |
T7,min | 2.917 | 0.392 | 7.450 | 0.000 | |
截距Intercept | -7.231 | 10.400 | -0.695 | 0.499 | |
T10,max | 2.872 | 0.423 | 6.792 | 0.000 | |
截距Intercept | 4.316 | 8.864 | 0.487 | 0.640 | |
T10,mean | 3.055 | 0.416 | 7.337 | 0.000 | |
截距Intercept | 19.161 | 7.863 | 2.437 | 0.063 | |
T10,min | 2.888 | 0.391 | 7.384 | 0.000 | |
截距Intercept | -11.761 | 10.267 | -1.146 | 0.272 | |
T15,max | 3.152 | 0.423 | 7.454 | 0.000 | |
截距Intercept | 3.704 | 8.771 | 0.422 | 0.685 | |
T15,mean | 3.134 | 0.412 | 7.598 | 0.000 | |
截距Intercept | 20.006 | 7.817 | 2.559 | 0.056 | |
T15,min | 2.844 | 0.385 | 7.382 | 0.000 | |
降水 Precipitation | 截距Intercept | 34.603 | 8.287 | 4.176 | 0.014 |
P7 | 0.313 | 0.091 | 3.429 | 0.000 | |
截距Intercept | 31.951 | 8.421 | 3.794 | 0.017 | |
P10 | 0.295 | 0.075 | 3.960 | 0.000 | |
截距Intercept | 30.258 | 8.510 | 3.556 | 0.019 | |
P15 | 0.226 | 0.056 | 4.044 | 0.000 |
1 | IPCC.Climate Change 2021:The physical science basis.contribution of working group Ⅰ to sixth assessment report of the intergovernmental panel on climate change[R].Cambridge:Cambridge University Press,2021. |
2 | SCHEFFERS B R, DE MEESTER L, BRIDGE T C L,et al.The broad footprint of climate change from genes to biomes to people[J].Science,2016,354(6313):aaf7671. |
3 | DINNENY J R, YANOFSKY M F.Vascular patterning:xylem or phloem?[J].Current Biology,2004,14(3):R112-R114. |
4 | RATHGEBER C B K, CUNY H E, FONTI P.Biological basis of tree-ring formation:a crash course[J].Frontiers in Plant Science,2016,7:734. |
5 | 牛豪阁.祁连山东部三种针叶树径向生长动态对气候的响应[D].兰州:兰州大学,2018. |
NIU H G.Intra-annual stem radial growth dynamics of threeconi ferous species in response to climate in the eastern Qilian Mountains[D].Lanzhou:Lanzhou University,2018. | |
6 | 王婕,余碧云,黄建国.鼎湖山锥栗木质部形成及其对气候的响应[J].热带亚热带植物学报,2020,28(5):445-454. |
WANG J, YU B Y, HUANG J G.Xylem formation and response to climate of Castanea henryi in Dinghushan Mountain[J].Journal of Tropical and Subtropical Botany,2020,28(5):445-454. | |
7 | 赵凡凡,叶茂,康利飞,等.基于微树芯的塔里木河下游胡杨年内径向生长动态研究[J].干旱区资源与环境,2021,35(12):156-162. |
ZHAO F F, YE M, KANG L F,et al.Research on intra-annual radial growth dynamics of Populus euphratica in lower reaches of Tarim River based on micro-tree core[J].Journal of Arid Land Resources and Environment,2021,35(12):156-162. | |
8 | 王玲玲,勾晓华,夏敬清,等.树木形成层活动及其影响因素研究进展[J].应用生态学报,2021,32(10):3761-3770. |
WANG L L, GOU X H, XIA J Q,et al.Research pogress on tree cambium activity and its influencing factors[J].Chinese Journal of Applied Ecology,2021,32(10):3761-3770. | |
9 | 韦小练,范泽鑫, KAEWMANO A,等.热带季节雨林多花白头树年内径向生长动态及其对环境因子的响应[J].应用生态学报,2021,32(10):3567-3575. |
WEL X L, FAN Z X, KAEWMANO A,et al.Intra-annual radial growth of Garuga floribunda in tropical seasonal rain forest and its response to environmental factors in Xishuangbanna,southwest China[J].Chinese Journal of Applied Ecology,2021,32(10):3567-3575. | |
10 | 于健,陈佳佳,孟盛旺,等.长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应[J].应用生态学报,2021,32(1):46-56. |
YU J, CHEN J J, MENG S W,et al.Response of radial growth of Pinus sylvestriformis and Picea jezoensis to climate warming in the ecotone of Changbai Mountain,northeast China[J].Chinese Journal of Applied Ecology,2021,32(1):46-56. | |
11 | ROSSI S, ANFODILLO T, ČUFAR K,et al.Pattern of xylem phenology in conifers of cold ecosystems at the northern Hemisphere[J].Global Change Biology,2016,22(11):3804-3813. |
12 | CABON A, PETERS R L, FONTI P,et al.Temperature and water potential co-limit stem cambial activity along a steep elevational gradient[J].New Phytologist,2020,226(5):1325-1340. |
13 | LIANG H X, JIANG S W, MUHAMMAD A,et al.Radial growth response of Picea crassifolia to climatic conditions in a dryland forest ecosystem in northwest China[J].Forests,2021,12(10):1382. |
14 | 戴君虎,王红丽,王焕炯,等.六盘山景观格局及与主要气候因子的关系[J].地理研究,2013,32(12):2222-2232. |
DAL J H, WANG H L, WANG H J,et al.Studies on landscape pattern of Liupan Mountains and the relationship with main climate factors[J].Geographical Research,2013,32(12):2222-2232. | |
15 | LIU Z B, WANG Y H, TIAN A,et al.Intra-annual variation of stem radius of Larix principis-rupprechtii and its response to environmental factors in Liupan Mountains of northwest China[J].Forests,2017,8(10):382. |
16 | ROSSI S, ANFODILLO T, MENARDI R.Trephor:a new tool for sampling microcores from tree stems[J].Iawa Journal,2006,27(1):89-97. |
17 | ROSSI S, DESLAURIERS A, ANFODILLO T.Assessment of cambial activity and xylogenesis by microsampling tree species:an example at the Alpine timberline[J].Iawa Journal,2006,27(4):383-394. |
18 | DESLAURIERS A, MORIN H, BEGIN Y.Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada)[J].Canadian Journal of Forest Research,2003,33(2):190-200. |
19 | CAMARERO J J, GUERRERO-CAMPO J, GUTIÉR-REZ E.Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the central Spanish Pyrenees[J].Arctic and Alpine Research,1998,30(1):1-10. |
20 | ROSSI S, DESLAURIERS A, MORIN H.Application of the Gompertz equation for the study of xylem cell development[J].Dendrochronologia,2003,21(1):33-39. |
21 | OBERHUBER W, GRUBER A, KOFLER W,et al.Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site[J].European Journal of Forest Research,2014,133(3):467-479. |
22 | CAMARERO J J, OLANO J M, PARRAS A.Plastic bimodal xylogenesis in conifers from continental Mediterranean climates[J].New Phytologist,2010,185(2):471-480. |
23 | TeamR Core.R:a language and environment for statistical computing[EB/OL].[2023-07-11].. |
24 | MOSER L, FONTI P, BÜNTGEN U,et al.Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps[J].Tree Physiology,2010,30(2):225-233. |
25 | LUPI C, MORIN H, DESLAURIERS A,et al.Xylem phenology and wood production:resolving the chicken-or-egg dilemma[J].Plant,Cell & Environment,2010,33(10):1721-1730. |
26 | ZHANG J Z, GOU X H, PEDERSON N,et al.Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region[J].Tree Physiology,2018,38(6):840-852. |
27 | ROSSI S, DESLAURIERS A, GRIÇAR J,et al.Critical temperatures for xylogenesis in conifers of cold climates[J].Global Ecology and Biogeography,2008,17(6):696-707. |
28 | KEYIMU M, LI Z S, JIAO L,et al.Radial growth response of Quercus liaotungensis to climate change:a case study on the central Loess Plateau,China[J].Trees,2022,36(3):1811-1822. |
29 | LANG G A.Dormancy:a new universal terminology[J].Hortscience,1987,22(5):817-820. |
30 | FU Y S H, ZHAO H F, PIAO S L,et al.Declining global warming effects on the phenology of spring leaf unfolding[J].Nature,2015,526(7571):104-107. |
31 | PERRY T O.Dormancy of Trees in winter:photoperiod is only one of the variables which interact to control leaf fall and other dormancy phenomena[J].Science,1971,171(3966):29-36. |
32 | HUANG J G, MA Q Q, ROSSI S,et al.Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in northern hemisphere conifers[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(34):20645-20652. |
33 | HUANG J G, GUO X L, ROSSI S,et al.Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season[J].Tree Physiology,2018,38(8):1225-1236. |
34 | WANG W J, HUANG J G, JIANG S W,et al.Response of xylem formation of Larix sibirica to climate change along the southern Altai Mountains,central Asia[J].Dendrochronologia,2023,77:126049. |
35 | 李明明,李刚.贺兰山地区植被冠层物候与树干形成层物候的关系[J].应用生态学报,2021,32(2):495-502. |
LI M M, LI G.Relationship between phenology of vegetation canopy and phenology of tree cambium in Helan Mountains,China[J].Chinese Journal of Applied Ecology,2021,32(2):495-502. | |
36 | GAO J N, YANG B, HE M H,et al.Intra-annual stem radial increment patterns of Chinese pine,Helan Mountains,northern central China[J].Trees,2019,33:751-763. |
37 | REN P, ROSSI S, GRICAR J,et al.Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau?[J].Annals of Botany,2015,115(4):629-639. |
38 | GRUBER A, ZIMMERMANN J, WIESER G,et al.Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone[J].Annals of Forest Science,2009,66(5):503. |
39 | DESLAURIERS A, MORIN H, URBINATI C,et al.Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada)[J].Trees,2003,17(6):477-484. |
40 | BOURIAUD O, LEBAN J M, BERT D,et al.Intra-annual variations in climate influence growth and wood density of Norway spruce[J].Tree Physiology,2005,25(6):651-660. |
41 | JIANG Y, WANG B Q, DONG M Y,et al.Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of north China[J].Trees,2015,29(1):87-96. |
42 | ZWEIFEL R, ZIMMERMANN L, ZEUGIN F,et al.Intra-annual radial growth and water relations of trees:implications towards a growth mechanism[J].Journal of Experimental Botany,2006,57(6):1445-1459. |
43 | ORIBE Y, FUNADA R, KUBO T.Relationships between cambial activity,cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters[J].Trees,2003,17(3):185-192. |
44 | RYAN D A J, ALLEN O B, MCLAUGHLIN D L,et al.Interpretation of sugar maple (Acersaccharum) ring chronologies from central and southern Ontario using a mixed linear model[J].Canadian Journal of Forest Research,1994,24(3):568-575. |
45 | STEPPE K, STERCK F, DESLAURIERS A.Diel growth dynamics in tree stems:linking anatomy and ecophysiology[J].Trends in Plant Science,2015,20(6):335-343. |
[1] | Wei LIU, Ziqiang ZHU. Recent Advances on Plant Root Thermomorphogenesis [J]. Bulletin of Botanical Research, 2024, 44(1): 1-7. |
[2] | Hangmei YANG, Liping LI, Mei SUN, Hongyi CHEN, Lingyan LI, Chunhui FENG. Response of leaf Hydraulic Traits of Typha orientalis to Simulated Warming and Elevated CO2 Concentration [J]. Bulletin of Botanical Research, 2023, 43(5): 729-740. |
[3] | Li LI, Xin WANG, Yuejing ZHANG, Lingyun JIA, Hailong PANG, Hanqing FENG. Effects of Abiotic Stresses on the Intracellular and Extracellular ATP Levels of Tobacco Suspension Cells [J]. Bulletin of Botanical Research, 2023, 43(2): 179-185. |
[4] | Senyao LIU, Fenglin JIA, Qing GUO, Gaofeng FAN, Boru ZHOU, Tingbo JIANG. Response Analysis of Transcription Factor PsnbHLH162 Gene in Populus simonii × P. nigra under Salt Stress and Low Temperature Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 300-310. |
[5] | Dongmei HUANG, Ying CHEN, Lu BAI, Di’an NI, Yiyang XU, Zhiguo ZHANG, Qiaoping QIN. Transcriptome Analysis of Hemerocallis fulva Leaves Respond to Low Temperature Stress [J]. Bulletin of Botanical Research, 2022, 42(3): 424-436. |
[6] | Mengjiao Wang, Yuxue Cao, Yongsheng Xu, Fenge Ding, Qiao Su. Overexpression of Marine Microbial Metagenomic MbCSP Enhanced Drought and Cold Tolerance of Transgenic Arabidopsisthaliana [J]. Bulletin of Botanical Research, 2022, 42(2): 243-251. |
[7] | Xue-Peng FU, Le WANG, Jia-Le WEN, Kai-Fang YANG, Xiao-Jie YANG. Observation and Comparison of Root Primary Xylem Archy in Different Chlorophytum Varieties [J]. Bulletin of Botanical Research, 2021, 41(2): 199-204. |
[8] | Yi-Ping GUO, Jia-Xin LIU, Ying YU, Chao WANG, Chuan-Ping YANG. Expression Profile Analysis ofXylem Development Regulated by BpNAC012 Gene from Betula platyphylla [J]. Bulletin of Botanical Research, 2021, 41(2): 251-261. |
[9] | Xin-Dan HU, Yao LI, Xiao-Hua ZHANG, Juan-Hong LIANG, Teng-Guo ZHANG. Effect of Exogenous ATP on Cold Tolerance of Brassica campestris Seedlings [J]. Bulletin of Botanical Research, 2021, 41(2): 302-311. |
[10] | Lin LU, Shang-Yu YANG, Wei-Dong LIU, Li-Ming LU. To Explore the Transcription Factor in Response to Low Temperature Stress in Nicotiana alata by Transcriptome Sequencing [J]. Bulletin of Botanical Research, 2021, 41(1): 119-129. |
[11] | Xin-Yu CHENG, Zhi-Yuan YAN, Meng-Qiao GUO, Hai-Jun XU, Bin TONG, Hong-Wei NI. Response of Flowing Time to Temperature Changein Heilongjiang Province [J]. Bulletin of Botanical Research, 2021, 41(1): 26-36. |
[12] | Yun-Hao ZHU, Meng-Jia ZHANG, Cheng-Ming DONG. Effects of Exogenous MeJA on Antioxidant System and Stress Genes of Pinellia ternata under High Temperature Stress [J]. Bulletin of Botanical Research, 2021, 41(1): 67-73. |
[13] | Xiang LI, Wan-Sheng LIU, Wei ZHOU, Fu-Yuan CHEN, Li-Qiang MU. Analysis on Community Structure and Dominant Population Point Pattern of Secondary Forest of Quercus mongolica [J]. Bulletin of Botanical Research, 2020, 40(6): 830-838. |
[14] | LIANG Zhao, WEI Kai-Lu, YANG Dong-Mei, PENG Guo-Quan. Effect of Soak Stems Overnight with Deionized Water on Measuring Maximum Hydraulic Conductivity in Xylem of Stem Segments of Robinia pseudoacacia L. and Age-relate Difference [J]. Bulletin of Botanical Research, 2020, 40(5): 706-717. |
[15] | LIU Jin-Yu, GAO Yue-Hao, HUANG Jin-Shuo, ZHANG Qin. Effects of Exogenous Salicylic Acid on Physiological and Electrical Impedance Parameters of Trollius chinensis Seedlings under High Temperature Stress [J]. Bulletin of Botanical Research, 2020, 40(4): 543-551. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||