Bulletin of Botanical Research ›› 2022, Vol. 42 ›› Issue (1): 29-38.doi: 10.7525/j.issn.1673-5102.2022.01.004
• Research Report • Previous Articles Next Articles
Shuang Ma1,2, Boya Wang1, Ying Cao1, Shanglian Hu1, Zhimin Gao2()
Received:
2020-11-13
Online:
2022-01-20
Published:
2021-12-30
Contact:
Zhimin Gao
E-mail:gaozhimin@icbr.ac.cn
About author:
Ma Shuang(1995—),female,postgraduate,mainly engaged in tree genetics and breeding research.
Supported by:
CLC Number:
Shuang Ma, Boya Wang, Ying Cao, Shanglian Hu, Zhimin Gao. Identification and Expression Analysis of Expansin Genes in Moso Bamboo (Phyllostachys edulis)[J]. Bulletin of Botanical Research, 2022, 42(1): 29-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2022.01.004
Table 1
Primer sequences used in real-time quantitative PCR
基因名称 Gene name | 上游引物 Forward primer(5′→3′) | 下游引物 Reverse primer(5′→3′) |
---|---|---|
PeEXPA1 | ACAACGAACTTCTGCGCT | AGCGCAATCTTCTCGAA |
PeEXPA2 | GCCACCGACGTTACTGACT | ACCATTTTCTCCTCCCCAT |
PeEXPA3 | TTTGCTACCAGGGATCCAAC | TGAAGGAACCCCATCCTATG |
PeEXPA4 | TAGGCTTGCTAGTTCTTGCC | TCCTCCCATTGTTCCTGAGG |
PeEXPA5 | TTCAACCTGGTGCTTGTCAC | GCGTTGTTCTGCCAGTTCTG |
PeEXPA6 | CCGCCCAACCACCATTT | CCGCCTTCACGAAGACACT |
PeEXPA7 | TCACGGCCACCAACTTCTG | ACAATGCCGGCCTTGTAGAG |
PeEXPA8 | ATGGGAGGGGCTTGTGGGTA | TTCGGCGGGCAGAGATTGGT |
PeEXPA9 | CGGTCGGTGTCGATCAA | CGTCCAGGTACGAGTTGCT |
PeEXPA10 | TGAAGGACTGGCGGAAAGT | TGGGTGAAGGGGACGAA |
PeEXPA11 | TCAGAACGGCAAGTGGTG | TCCTGTAGGTGATGGGCAC |
PeEXPA12 | TCTTCACACAGGGAACCCTT | TTCTGCCCGCCCAACTA |
PeEXPA13 | GAGGGTTCCATGTGTGAGG | ACAAGTACGAGATTGAAGTAGTCG |
PeEXPA14 | TTGCCATGCCCATGTTCCTC | AAGTACCGGAACCCGTTGATC |
PeEXPA15 | ACTTGAACCCAAATTAAGGCC | GATGGAGGAAGAGGAGGACG |
PeEXPA16 | GTGCCGTGCGTGAAGAA | GAAGTAGGAGTGGCCGTTG |
PeEXPA17 | GTTCAGGTACTTCAACCTGGTGC | GCGTTGGACTGCCAGTTCT |
PeEXPA18 | CGACCATCGCCATCTACCA | TCCACATCTGCGTCACCAC |
PeTIP41 | AAAATCATTGTAGGCCATTGTCG | ACTAAATTAAGCCAGCGGGAGTG |
Table 2
Analysis of basic physicochemical properties of expansins in moso bamboo
基因名称 Gene | 基因编号 Accession number | 编码氨基酸长度 Coding amino acid length (aa) | 理论等电点 pI | 分子量 Molecular weight /kDa | 不稳定系数 Unstability index | 脂肪系数 Aliphatic index | 总平均亲水性 GRAVY |
---|---|---|---|---|---|---|---|
PeEXPA1 | PH01000000G0970 | 257 | 8.38 | 38.65 | 33.31 | 80.86 | 0.02 |
PeEXPA2 | PH01000009G2460 | 258 | 8.59 | 38.50 | 33.31 | 80.12 | 0.02 |
PeEXPA3 | PH01000083G0540 | 250 | 5.47 | 35.86 | 41.46 | 59.00 | -0.18 |
PeEXPA4 | PH01000094G0210 | 126 | 9.41 | 19.08 | 32.18 | 72.40 | -0.12 |
PeEXPA5 | PH01000135G1480 | 247 | 9.89 | 37.13 | 39.13 | 63.68 | -0.21 |
PeEXPA6 | PH01000160G0990 | 127 | 10.00 | 19.73 | 30.12 | 77.38 | -0.11 |
PeEXPA7 | PH01000519G0080 | 275 | 9.26 | 38.87 | 39.22 | 68.07 | -0.07 |
PeEXPA8 | PH01000615G0020 | 259 | 8.65 | 38.20 | 39.58 | 65.60 | -0.05 |
PeEXPA9 | PH01000659G0190 | 251 | 7.55 | 36.06 | 37.71 | 59.16 | -0.16 |
PeEXPA10 | PH01000705G0150 | 256 | 8.62 | 38.07 | 31.13 | 73.52 | 0.07 |
PeEXPA11 | PH01001348G0370 | 247 | 9.89 | 37.13 | 39.13 | 63.68 | -0.21 |
PeEXPA12 | PH01001280G0510 | 250 | 5.47 | 35.86 | 41.46 | 59.00 | -0.18 |
PeEXPA13 | PH01001032G0370 | 126 | 10.00 | 19.73 | 30.12 | 77.38 | -0.11 |
PeEXPA14 | PH01001528G0240 | 260 | 9.28 | 38.25 | 40.04 | 65.38 | -0.08 |
PeEXPA15 | PH01001624G0020 | 248 | 8.77 | 35.92 | 38.40 | 69.76 | -0.01 |
PeEXPA16 | PH01002238G0310 | 252 | 8.07 | 36.17 | 40.70 | 58.93 | -0.14 |
PeEXPA17 | PH01003318G0170 | 118 | 11.20 | 17.80 | 18.81 | 64.49 | -0.30 |
PeEXPA18 | PH01003538G0010 | 125 | 9.41 | 19.08 | 32.18 | 72.40 | -0.12 |
PeEXPB1 | PH01000028G1350 | 250 | 6.02 | 36.11 | 38.33 | 62.12 | -0.15 |
PeEXPB2 | PH01000069G0690 | 134 | 7.52 | 19.50 | 21.87 | 87.29 | 0.18 |
PeEXPB3 | PH01000104G0690 | 91 | 7.50 | 12.52 | 9.96 | 63.00 | -0.02 |
PeEXPB4 | PH01000397G0840 | 264 | 6.93 | 39.65 | 31.45 | 71.94 | -0.21 |
PeEXPB5 | PH01000397G0850 | 227 | 8.47 | 33.94 | 36.93 | 72.88 | -0.15 |
PeEXPB6 | PH01000397G0880 | 267 | 5.07 | 39.48 | 28.81 | 70.83 | -0.12 |
PeEXPB7 | PH01000397G0930 | 279 | 6.38 | 42.25 | 26.25 | 66.45 | -0.27 |
PeEXPB8 | PH01000995G0300 | 291 | 9.03 | 42.40 | 34.60 | 69.14 | -0.11 |
PeEXPB9 | PH01001155G0250 | 262 | 6.07 | 39.35 | 35.82 | 70.76 | -0.19 |
PeEXPB10 | PH01001155G0260 | 273 | 9.10 | 41.20 | 34.06 | 70.40 | -0.19 |
PeEXPB11 | PH01001155G0300 | 265 | 5.20 | 39.27 | 27.40 | 68.91 | -0.14 |
PeEXPB12 | PH01001155G0360 | 276 | 8.12 | 42.08 | 21.19 | 69.28 | -0.30 |
PeEXPB13 | PH01001579G0330 | 265 | 8.34 | 39.90 | 31.37 | 72.91 | -0.18 |
PeEXPB14 | PH01001963G0300 | 272 | 8.76 | 40.71 | 29.54 | 77.46 | 0.01 |
PeEXPB15 | PH01002134G0230 | 160 | 8.82 | 24.35 | 22.84 | 78.19 | 0.02 |
PeEXPB16 | PH01003173G0150 | 307 | 4.67 | 44.32 | 27.81 | 81.07 | 0.23 |
PeEXPB17 | PH01042209G0010 | 304 | 5.08 | 44.48 | 30.28 | 62.96 | -0.44 |
PeEXLA1 | PH01000059G1970 | 251 | 9.62 | 37.37 | 40.02 | 82.03 | 0.09 |
PeEXLA2 | PH01000233G0920 | 251 | 7.55 | 36.06 | 37.71 | 59.16 | -0.16 |
PeEXLA3 | PH01000243G0350 | 276 | 7.47 | 41.11 | 39.03 | 77.35 | -0.05 |
PeEXLA4 | PH01000724G0610 | 299 | 6.45 | 45.37 | 41.33 | 77.02 | -0.18 |
PeEXLA5 | PH01001177G0450 | 271 | 8.84 | 41.20 | 33.98 | 79.23 | -0.07 |
PeEXLA6 | PH01001195G0040 | 278 | 8.86 | 42.12 | 35.93 | 85.25 | -0.07 |
PeEXLA7 | PH01001848G0230 | 303 | 7.93 | 45.99 | 36.21 | 77.62 | -0.17 |
PeEXLB1 | PH01000553G0340 | 508 | 6.41 | 76.77 | 38.91 | 87.20 | -0.02 |
Table 3
Relative usage frequency of gene codons in the expansins of moso bamboo(%)
氨基酸 Amino acid | 密码子 Codon | 相对使用 频率 RFSC /% | 氨基酸 Amino acid | 密码子 Codon | 相对使用 频率 RFSC /% | 氨基酸 Amino acid | 密码子 Codon | 相对使用 频率 RFSC /% | 氨基酸 Amino acid | 密码子 Codon | 相对使用 频率 RFSC /% |
---|---|---|---|---|---|---|---|---|---|---|---|
Phe | UUU | 11.00 | Ser | UCU | 8.33 | Tyr | UAU | 10.50 | Cys | UGU | 8.00 |
89.00 | 36.00 | 89.50 | 92.00 | ||||||||
Leu | UUA | 1.67 | UCA | 4.67 | TER | UAA | 18.00 | TER | 51.33 | ||
UUG | 5.33 | UCG | 19.67 | UAG | 30.67 | Trp | UGG | 100.00 | |||
CUU | 9.83 | Pro | CCU | 9.25 | His | CAU | 14.00 | Arg | CGU | 6.00 | |
48.33 | 42.75 | 86.00 | 35.33 | ||||||||
CUA | 2.83 | CCA | 8.50 | Gln | CAA | 12.50 | CGA | 4.00 | |||
32.00 | 39.50 | 87.50 | CGG | 23.00 | |||||||
Ile | AUU | 12.33 | Thr | ACU | 5.50 | Asn | AAU | 11.50 | Ser | AGU | 2.00 |
80.33 | 50.75 | 88.50 | 29.33 | ||||||||
Met | AUA | 7.00 | ACA | 7.75 | Lys | AAA | 8.50 | Arg | AGA | 7.67 | |
AUG | 100.00 | ACG | 36.00 | 91.50 | AGG | 24.00 | |||||
Val | GUU | 8.00 | Ala | GCU | 10.00 | Asp | GAU | 14.00 | Gly | GGU | 10.25 |
42.00 | 54.50 | 86.00 | 63.25 | ||||||||
GUA | 3.00 | GCA | 8.00 | Glu | GAA | 20.00 | GGA | 6.50 | |||
47.00 | GCG | 27.50 | 80.00 | GGG | 19.75 |
1 | Mcqueen-Mason S,Durachko D M,Cosgrove D J.Two endogenous proteins that induce cell wall extension in plants[J].The Plant Cell,1992,4(11):1425-1433. |
2 | Li Y,Jones L,Mcqueen-Mason S.Expansins and cell growth[J].Current Opinion in Plant Biology,2003,6(6):603-610. |
3 | Cho H T,Kende H.Expansins in deepwater rice internodes[J].Plant Physiology,1997,113(4):1137-1143. |
4 | Che J,Yamaji N,Shen R F,et al.An Al-inducible expansin gene,OsEXPA10 is involved in root cell elongation of rice[J].The Plant Journal,2016,88(1):132-142. |
5 | Kuluev B R,Knyazev A V,Mikhaylova E V,et al.The role of expansin genes PtrEXPA3 and PnEXPA3 in the regulation of leaf growth in poplar[J].Russian Journal of Genetics,2017,53(6):651-660. |
6 | Saito T,Tuan P A,Katsumi-Horigane A,et al.Development of flower buds in the japanese pear(Pyrus pyrifolia) from late autumn to early spring[J].Tree Physiology,2015,35(6):653-662. |
7 | Kuluev B R,Knyazev A V,Nikonorov Y M,et al.Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco leaf growth[J].Russian Journal of Genetics,2014,50(5):489-497. |
8 | Abuqamar S,Ajeb S,Sham A,et al.A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana[J].Molecular Plant Pathology,2013,14(8):813-827. |
9 | Lü P T,Kang M,Jiang X Q,et al.RhEXPA4,a rose expansin gene,modulates leaf growth and confers drought and salt tolerance to Arabidopsis[J].Planta,2013,237(6):1547-1559. |
10 | Ilias I A,Airianah O B,Baharum S N,et al.Transcriptomic data of Arabidopsis thaliana hypocotyl upon suppression of expansin genes[J].Genomics Data,2017,12:132-133. |
11 | Ilias I A,Negishi K,Keito Y,et al.Transcriptome-wide effects of expansin gene manipulation in etiolated Arabidopsis seedling[J].Journal of Plant Research,2019,132(2):159-172. |
12 | Chen S K,Luo Y X,Wang G J,et al.Genome-wide identification of expansin genes in Brachypodium distachyon and functional characterization of BdEXPA27[J].Plant Science,2020,296:110490. |
13 | 李玉敏,冯鹏飞.基于第九次全国森林资源清查的中国竹资源分析[J].世界竹藤通讯,2019,17(6):45-48. |
Li Y M,Feng P F.Bamboo resources in china based on the ninth national forest inventory data[J].World Bamboo and Rattan,2019,17(6):45-48. | |
14 | Peng Z H,Lu Y,Li L B,et al.The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys edulis)[J].Nature Genetics,2013,45(4):456-461. |
15 | Shan X M,Yang K B,Xu X R,et al.Genome-wide investigation of the NAC gene family and its potential association with the secondary cell wall in moso bamboo[J].Biomolecules,2019,9(10):609. |
16 | Yang K B,Li Y,Wang S N,et al.Genome-wide identification and expression analysis of the MYB transcription factor in moso bamboo(Phyllostachys edulis)[J].PeerJ,2019,6:e6242. |
17 | Xu X R,Lou Y F,Yang K B,et al.Identification of homeobox genes associated with lignification and their expression patterns in bamboo shoots[J].Biomolecules,2019,9(12):862. |
18 | Gascuel O,Steel M.Neighbor-joining revealed[J].Molecular Biology and Evolution,2006,23(11):1997-2000. |
19 | Sharp P M,Li W H.The codon adaptation index-a measure of directional synonymous codon usage bias,and its potential applications[J].Nucleic Acids Research,1987,15(3):1281-1295. |
20 | Wright F.The 'effective number of codons' used in a gene[J].Gene,1990,87(1):23-29. |
21 | Wang M,Zhang J,Zhou J H,et al.Analysis of codon usage in Type 1 and the new genotypes of duck hepatitis virus[J].Biosystems,2011,106(1):45-50. |
22 | 吴林军,张智俊,朱丰晓,等.毛竹qRT-PCR分析中内参基因的选择[J].农业生物技术学报,2018,26(3):502-510. |
Wu L J,Zhang Z J,Zhu F X,et al.The selection of endogenous reference genes in Phyllostachys edulis for qRT-PCR analysis[J].Journal of Agricultural Biotechnology,2018,26(3):502-510. | |
23 | Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method[J].Methods,2001,25(4):402-408. |
24 | 吴宪明,吴松锋,任大明,等.密码子偏性的分析方法及相关研究进展[J].遗传,2007,29(4):420-426. |
Wu X M,Wu S F,Ren D M,et al.The analysis method and progress in the study of codon bias[J].Hereditas,2007,29(4):420-426. | |
25 | 施杨,徐筱,李昊阳,等.水稻扩展蛋白家族的生物信息学分析[J].遗传,2014,36(8):809-820. |
Shi Y,Xu X,Li H Y,et al.Bioinformatics analysis of the expansin gene family in rice[J].Hereditas,2014,36(8):809-820. | |
26 | 李昊阳,施杨,丁亚娜,等.杨树扩展蛋白基因家族的生物信息学分析[J].北京林业大学学报,2014,36(2):59-67. |
Li H Y,Shi Y,Ding Y N,et al.Bioinformatics analysis of expansin gene family in poplar genome[J].Journal of Beijing Forestry University,2014,36(2):59-67. | |
27 | Tan J,Wang M L,Shi Z Y,et al.OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice[J].Plant Cell Reports,2018,37(7):993-1002. |
28 | Hu L W,Cui D Y,Neill S,et al.OsEXPA4 and OsRWC3 are involved in asymmetric growth during gravitropic bending of rice leaf sheath bases[J].Physiologia Plantarum,2007,130(4):560-571. |
[1] | Zhanmin ZHENG, Yubing SHANG, Guangbo ZHOU, Di XIAO, Yi LIU, Xiangling YOU. Genetic Transformation and Function Analysis of PsnHB13 and PsnHB15 of Populus simonii × Populus nigra [J]. Bulletin of Botanical Research, 2023, 43(3): 340-350. |
[2] | Shixian LIAO, Yuting WANG, Liben DONG, Yongmei GU, Fenglin JIA, Tingbo JIANG, Boru ZHOU. Function Analysis of the Transcription Factor PsnbZIP1 of Populus simonii×P. nigra in Response to Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 288-299. |
[3] | Senyao LIU, Fenglin JIA, Qing GUO, Gaofeng FAN, Boru ZHOU, Tingbo JIANG. Response Analysis of Transcription Factor PsnbHLH162 Gene in Populus simonii × P. nigra under Salt Stress and Low Temperature Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 300-310. |
[4] | Anying HUANG, Dean XIA, Yang ZHANG, Dongchen NA, Qing YAN, Zhigang WEI. Cloning and Drought Tolerance Expression Analysis of PtrWRKY51 Gene in Populus trichocarpa [J]. Bulletin of Botanical Research, 2022, 42(6): 1005-1013. |
[5] | Huafeng CHEN, Longjun DAI, Mingyang LIU, Bingbing GUO, Hong YANG, Lifeng WANG. Stress Tolerance Functional Analysis of the High Expression Heat Shock Protein HbHSP90.4 Gene from the Latex of Hevea brasiliensis [J]. Bulletin of Botanical Research, 2022, 42(6): 1023-1032. |
[6] | Denggao LI, Rui LIN, Qinghui MU, Na ZHOU, Yanru ZHANG, Wei BAI. Identification and Analysis of the Potato StCRKs Gene Family and Expression Patterns in Response to Stress Signals [J]. Bulletin of Botanical Research, 2022, 42(6): 1033-1043. |
[7] | Mingyang LIU, Huaxing XIAO, Lifeng WANG, Xiaoxu LIANG, Yu ZHANG, Meng WANG. Cloning and Functional Analysis of Heat Shock Protein HbHSP90.8-1 from Hevea brasiliensis Müll. Arg. [J]. Bulletin of Botanical Research, 2022, 42(5): 811-820. |
[8] | He CHENG, Shuanghui TIAN, Yang ZHANG, Cong LIU, De’an XIA, Zhigang WEI. Genome-wide Identification and Expression Analysis of nsLTP Gene Family in Populus trichocarpa [J]. Bulletin of Botanical Research, 2022, 42(3): 412-423. |
[9] | Qian Sun, Yuhang Wu, Yaxuan Zhang, Jingdan Cao, Jingjing Shi, Chao Wang. Bioinformatic Analysis and Expression Pattern of LTP Family Genes in Populus davidiana × P. alba var. pyramidalis [J]. Bulletin of Botanical Research, 2022, 42(2): 211-223. |
[10] | Yuning Yang, Hao Dong, Shiwei Dong, Nairui Wang, Yue Song, Hanguo Zhang, Shujuan Li. Cloning and Expression Analysis of Transcription Factor LobHLH34 from Larix olgensis [J]. Bulletin of Botanical Research, 2022, 42(1): 112-120. |
[11] | Jiaming Zhao, Erqin Fan, Yi Liu, Zhi Wang, Junhui Wang, Guanzheng Qu. Cloning and Bioinformatics Analysis of CbuATX1,CbuATX1-like and CbuATX2 Genes from Catalpa bungei [J]. Bulletin of Botanical Research, 2022, 42(1): 47-61. |
[12] | Hua-Feng CHEN, Yu-Qing TANG, Ya-Jie PAN, Xiao-Rui GUO. Progress on the Metabolic Basis and Regulation Mechanism of Fruit Flavor [J]. Bulletin of Botanical Research, 2021, 41(3): 474-480. |
[13] | Shu-Ping PENG, Cheng-Ming DONG, Yun-Hao ZHU. Cloning and Expression Analysis of Two Key Genes of Jasmonic Acid Synthesis in Response to Endophytic Infection from Rehmannia glutinosa [J]. Bulletin of Botanical Research, 2021, 41(2): 294-301. |
[14] | Wen-Lin WANG, Hai-Sheng CHEN, Shu-Fang ZHENG, Song-Le FAN, Li-Feng WANG, Qiu-Jin TAN, Zhen-Shi QIN, Xi-Yun HUANG, Peng HE, Xiu-hua TANG, Peng XU. Cloning,Structure and Function Analysis of MiMYB2 Gene from Macadamia integrifolia [J]. Bulletin of Botanical Research, 2020, 40(6): 913-922. |
[15] | MA Miao-Miao, LI Cheng-Hao, LIU Xiao, ZHANG Xin, YANG Jing-Li. Cloning and Bioinformatics Analysis of LoERF017 Gene from Larix kaempferi [J]. Bulletin of Botanical Research, 2020, 40(4): 602-612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||