Bulletin of Botanical Research ›› 2021, Vol. 41 ›› Issue (6): 993-1005.doi: 10.7525/j.issn.1673-5102.2021.06.018
• Research Report • Previous Articles Next Articles
Shuang-Hui TIAN1, He CHENG1, Yang ZHANG1, Cong LIU1, De-An XIA1, Zhi-Gang WEI2()
Received:
2021-05-10
Online:
2021-11-20
Published:
2021-10-29
Contact:
Zhi-Gang WEI
E-mail:zhigangwei1973@163.com
About author:
TIAN Shuang-Hui(1995—),female,postgraduate,mainly engaged in research on forest genetics and breeding.
Supported by:
CLC Number:
Shuang-Hui TIAN, He CHENG, Yang ZHANG, Cong LIU, De-An XIA, Zhi-Gang WEI. Genome-wide Identification and Expressional Analysis of Carotenoid Cleavage Dioxygenases(CCD) Gene Family in Populus trichocarpa under Drought and Salt Stress[J]. Bulletin of Botanical Research, 2021, 41(6): 993-1005.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2021.06.018
Table 1
Primer sequences for qRT-PCR of PtrCCD gene family
定量引物名称 qRT-PCR primer name | F端引物序列 F-terminal primer sequence(5′—3′) | R端引物序列 R-terminal primer sequence(5′—3′) |
---|---|---|
PtrCCD4a | AGAGAGACCAAAATGGCGGAG | AGTTTCGTCGAGAACCGGAG |
PtrCCD4b | CAACTTCGCTCCCGTTCCT | GGTTTGGACCCACCCTCAC |
PtrCCD4c | CATTTCGGCATGAGATGGCAG | TCTCTGGTAGATGAGGGGGT |
PtrCCD4d | CAACCAGAAGCAGACGGACA | CCTTCCAAATCACGGTTGCT |
PtrCCD4e | AAGCAGGCTGCAGGACATAC | GATAACAAGCGGGTTCTTAGGT |
PtrCCD4f | GCTTTGTCGTGACTTGTGGC | CCCATGGAACACGTCTAGGAA |
PtrCCD4g | AGCAAATGCTGTGAAATCTGATG | GGAGACTTGGCATCCATAACAGT |
PtrCCD4h | TTGAATCATGAGCTGTCCCGT | TATGGGTTTTGGGTGCGTGT |
PtrCCD4i | GCATGATGAGAACTCCGGTC | AAGAGAGGCTACGAGTCCGAT |
PtrCCD8a | GGATGCTGGGTGCCAAAGAA | AAAAGATGGACAAGCCAACAAAAA |
PtrCCD8b | TCACCAGTTCAACGCTGCT | ATGACTGCAACTCCTCAAGACA |
PtrActin | AGGCAGGTTTCGCAGGAGATGA | TCCATCACCAGAATCCAGCACA |
Table 2
Characteristics of PtrCCD and their encoded proteins
基因名字 Gene name | 登录号 Accession No. | 基因位置 Location(5′—3′) | cds长度 Length of cds(bp) | 氨基酸 Amino acid(aa) | 等电点 PI | 分子量 Molecular weight(KDa) | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
PtrCCD4a | Potri.001G265400.1 | Chr01:27349090-27356583 | 1 656 | 551 | 5.84 | 62.12 | C |
PtrCCD4b | Potri.009G060500.1 | Chr09:6255532-6262921 | 1 881 | 626 | 7.66 | 70.42 | C |
PtrCCD4c | Potri.001G265900.1 | Chr01:27384456-27389644 | 1 323 | 440 | 6.1 | 49.9 | C |
PtrCCD4d | Potri.005G069100.1 | Chr05:4955113-4957530 | 1 836 | 611 | 6.15 | 66.94 | C |
PtrCCD4e | Potri.019G093400.1 | Chr19:12358073-12360220 | 1 839 | 612 | 6.52 | 66.94 | C |
PtrCCD4f | Potri.004G190700.1 | Chr04:20536504-20537827 | 996 | 331 | 8.42 | 37.86 | C |
PtrCCD4g | Potri.009G152300.1 | Chr09:11947452-11949727 | 1 581 | 526 | 7.55 | 58.54 | C |
PtrCCD4h | Potri.009G152200.1 | Chr09:11939825-11941582 | 1 746 | 581 | 7.27 | 65.10 | C |
PtrCCD4i | Potri.009G151900.1 | chr09:11927854-11929641 | 1 788 | 595 | 7.95 | 66.73 | C/Chl/E |
PtrCCD8a | Potri.006G238500.1 | Chr06:24740981-24746347 | 1 674 | 557 | 5.75 | 61.89 | C |
PtrCCD8b | Potri.018G044100.1 | Chr18:3994122-3998074 | 1 674 | 557 | 5.87 | 62 | C |
Table 3
Ka/Ks values and homologous status of homologous PtrCCD
同源基因Paralogues | 非同义替换率 Ka(JC) | 同义替换率 Ks(JC) | Ka/Ks | 同源片段长度 Homologous fragment(bp) | 同源性 Homology(%) | |
---|---|---|---|---|---|---|
基因1 Gene 1 | 基因2 Gene 2 | |||||
PtrCCD4a | PtrCCD4c | 0.015 876 | 0.055 039 | 0.288 454 | 1 291 | 98% |
PtrCCD4b | PtrCCD4c | 0.057 054 | 0.183 749 | 0.310 499 | 1 210 | 93% |
PtrCCD4a | PtrCCD4b | 0.051 108 | 0.245 111 | 0.208 509 | 1 506 | 93% |
PtrCCD4d | PtrCCD4e | 0.027 409 | 0.165 349 | 0.165 763 | 1 732 | 94% |
PtrCCD8a | PtrCCD8b | 0.037 764 | 0.260 887 | 0.144 752 | 1 540 | 92% |
Table 4
Cis acting elements in promoter sequence of PtrCCD family genes
基因名称 Gene name | 植物激素响应元件 Phytohormone response element | 非生物胁迫响应元件 Abiotic stress response element | 共计 Total amount | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TGA element | TCA element | CGTCA motif | ABRE | TGACG motif | ARE | STRE | MBS | DRE | TC-rich repeats | LTR | ||
PtrCCD4a | 1 | 0 | 1 | 6 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 12 |
PtrCCD4b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PtrCCD4c | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 5 |
PtrCCD4d | 0 | 1 | 0 | 1 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 9 |
PtrCCD4e | 1 | 0 | 0 | 1 | 0 | 5 | 0 | 1 | 0 | 3 | 1 | 12 |
PtrCCD4f | 1 | 1 | 2 | 5 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 12 |
PtrCCD4g | 0 | 0 | 1 | 8 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 10 |
PtrCCD4h | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
PtrCCD4i | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 12 |
PtrCCD8a | 2 | 2 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
PtrCCD8b | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 3 |
共计Total amount | 5 | 4 | 12 | 29 | 5 | 30 | 1 | 1 | 1 | 4 | 1 | 93 |
1 | Weedon B,Moss G P.ChemInform Abstract:Structure and Nomenclature[J]. ChemInform,1995:26(32). |
2 | Britton G.Structure and nomenclature of carotenoids[M].//Britton G,Young A.Carotenoids in Photosynthesis.London:Chapman and Hall,1993:1-15. |
3 | Bartley G E,Scolnik P A.Plant carotenoids:pigments for photoprotection,visual attraction,and human health[J].The Plant Cell,1995,7(7):1027-1038. |
4 | Tracewell C A,Vrettos J S,Bautista J A,et al.Carotenoid photooxidation in photosystem Ⅱ[J].Archives of Biochemistry and Biophysics,2001,385(1):61-69. |
5 | Bouvier F,Isner J C,Dogbo O,et al.Oxidative tailoring of carotenoids:a prospect towards novel functions in plants[J].Trends in Plant Science,2005,10(4):187-194. |
6 | Heo J,Kim S H,Lee P C.New insight into the cleavage reaction of Nostoc sp.strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids[J].Applied and Environmental Microbiology,2013,79(11):3336-3345. |
7 | Ohmiya A,Sumitomo K,Aida R.“Yellow Jimba”:suppression of carotenoid cleavage dioxygenase(CmCCD4a) expression turns white chrysanthemum petals yellow[J].The of the Japanese Society for Horticultural Science,2009,78(4):450-455. |
8 | Kloer D P,Ruch S,Al-Babili S,et al.The structure of a retinal-forming carotenoid oxygenase[J].Science,2005,308(5719):267-269. |
9 | Auldridge M E,Block A,Vogel J T,et al.Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family[J].The Plant Journal,2006,45(6):982-993. |
10 | Kim Y,Hwang I,Jung H J,et al.Genome-wide classification and abiotic stress-responsive expression profiling of carotenoid oxygenase genes in Brassica rapa and Brassica oleracea[J].Journal of Plant Growth Regulation,2016,35(1):202-214. |
11 | Lashbrooke J G,Young P R,Dockrall S J,et al.Functional characterisation of three members of the Vitis vinifera L.carotenoid cleavage dioxygenase gene family[J].BMC Plant Biology,2013,13(1):156. |
12 | Vallabhaneni R,Bradbury L M T,Wurtzel E T.The carotenoid dioxygenase gene family in maize,sorghum,and rice[J].Archives of Biochemistry and Biophysics,2010,504(1):104-111. |
13 | Walter M H,Floss D S,Strack D.Apocarotenoids:hormones,mycorrhizal metabolites and aroma volatiles[J].Planta,2010,232(1):1-17. |
14 | Wei Y P,Wan H J,Wu Z M,et al.A comprehensive analysis of carotenoid cleavage dioxygenases genes in Solanum lycopersicum[J].Plant Molecular Biology Reporter,2016,34(2):512-523. |
15 | Tan B C,Schwartz S H,Zeevaart J A D,et al.Genetic control of abscisic acid biosynthesis in maize[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(22):12235-12240. |
16 | Kloer D P,Schulz G E.Structural and biological aspects of carotenoid cleavage[J].Cellular and Molecular Life Sciences CMLS,2006,63(19-20):2291-2303. |
17 | Ilg A,Beyer P,Al-Babili S.Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis[J].The FEBS Journal,2009,276(3):736-747. |
18 | Simkin A J,Schwartz S H,Auldridge M,et al.The tomato Carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone,pseudoionone,and geranylacetone[J].The The Plant Journal,2004,40(6):882-892. |
19 | Alder A,Jamil M,Marzorati M,et al.The path from β-carotene to carlactone,a strigolactone-like plant hormone[J].Science,2012,335(6074):1348-1351. |
20 | Booker J,Sieberer T,Wright W,et al.MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J].Developmental Cell,2005,8(3):443-449. |
21 | Schwartz S H,Qin X Q,Loewen M C.The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching[J].Journal of Biological Chemistry,2004,279(45):46940-46945. |
22 | Seo M,Koshiba T.Complex regulation of ABA biosynthesis in plants[J].Trends in Plant Science,2002,7(1):41-48. |
23 | Wang R K,Wang C E,Fei Y Y,et al.Genome-wide identification and transcription analysis of soybean carotenoid oxygenase genes during abiotic stress treatments[J].Molecular Biology Reports,2013,40(8):4737-4745. |
24 | Chen H F,Zuo X Y,Shao H X,et al.Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple(Malus domestica)[J].Plant Physiology and Biochemistry,2018,123:81-93. |
25 | Walker J M.The proteomics protocols handbook[M].Totowa:Humana Press2005. |
26 | Chou K C,Shen H B.Cell-PLoc:a package of Web servers for predicting subcellular localization of proteins in various organisms[J].Nature Protocols,2008,3(2):153-162. |
27 | Qin C B,Wang X M.The arabidopsis phospholipase D family.characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains[J].Plant Physiology,2002,128(3):1057-1068. |
28 | Kumar S,Stecher G,Li M,et al.MEGA X:molecular evolutionary genetics analysis across computing platforms[J].Molecular Biology and Evolution,2018,35(6):16547-1549. |
29 | Tamura K,Stecher G,Peterson D,et al.MEGA6:molecular evolutionary genetics analysis version 6.0[J].Molecular Biology and Evolution,2013,30(12):2725-2729. |
30 | Chen C J,Chen H,Zhang Y,et al.TBtools:an integrative toolkit developed for interactive analyses of big biological data[J].Molecular Plant,2020,13(8):1194-1202. |
31 | Wang L Z,Hu W,Sun J T,et al.Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9[J].Plant Science,2015,237:33-45. |
32 | Sun X,Cao L N,Zhang S,et al.Genome-wide analysis of the RGP gene family in Populus trichocarpa and their expression under nitrogen treatment[J].Gene Expression Patterns,2020,38.119142. |
33 | Zhang Y,Liu C,Cheng H,et al.DNA methylation and its effects on gene expression during primary to secondary growth in poplar stems[J].BMC Genomics,2020,21(1):498. |
34 | Priya R,Siva R.Phylogenetic analysis and evolutionary studies of plant carotenoid cleavage dioxygenase gene[J].Gene,2014,548(2):223-233. |
35 | 陈鸿飞.苹果CCO和GATA基因家族的鉴定、系统进化和非生物胁迫的表达分析[D].杨凌:西北农林科技大学,2018. |
Chen H F.Genome-wide identification,phylogenetic evolution and expression analysis of CCO and GATA gene families in apple[D].Yangling:Northwest A&F University,2018. | |
36 | Vision T J,Brown D G,Tanksley S D.The origins of genomic duplications in Arabidopsis[J].Science,2000,290(5499):2114-2117. |
37 | Yang S H,Zhang X H,Yue J X,et al.Recent duplications dominate NBS-encoding gene expansion in two woody species[J].Molecular Genetics and Genomics,2008,280(3):187-198. |
38 | 张亚飞,彭洁,朱延松,等.柑橘CCD基因家族鉴定及CcCCD4a对果肉颜色的影响[J].中国农业科学,2020,53(9):1874-1883,1885-1889. |
Zhang Y F ,Peng J ,Zhu Y S,et al.Genome wide identification of CCD gene family in Citrus and effect of CcCCD4a on the color of citrus flesh[J].Scientia Agricultura Sinica,2020,53(9):1874-1883,1885-1889. | |
39 | Rushton P J,Somssich I E,Ringler P,et al.WRKY transcription factors[J].Trends in Plant Science,2010,15(5):247-258. |
40 | 王佺珍,刘倩,高娅妮,等.植物对盐碱胁迫的响应机制研究进展[J].生态学报,2017,37(16):5565-5577. |
Wang Q Z,Liu Q,Gao Y N,et al.Review on the mechanisms of the response to salinity-alkalinity stress in plants[J].Acta Ecologica Sinica,2017,37(16):5565-5577. | |
41 | Capula-Rodríguez R,Valdez-Aguilar L A,Cartmill D L,et al.Supplementary calcium and potassium improve the response of tomato(Solanum lycopersicum L.) to simultaneous alkalinity,salinity,and boron stress[J].Communications in Soil Science and Plant Analysis,2016,47(4):505-511. |
42 | Chen W C,Cui P J,Sun H Y,et al.Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn(Hippophae rhamnoides L.)[J].Industrial Crops and Products,2009,30(3):351-358. |
43 | 郭瑞,李峰,周际,等.亚麻响应盐、碱胁迫的生理特征[J].植物生态学报,2016,40(1):69-79. |
Guo R,Li F,Zhou J,et al.Eco-physiological responses of linseed(Linum usitatissimum) to salt and alkali stresses[J].Chinese Journal of Plant Ecology,2016,40(1):69-79. |
[1] | Lei XU, Xiao XU, Qinsong LIU. Effects of Exogenous Salicylic Acid on Antioxidant System and Gene Expression of Davidia involucrata Seedlings under Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(4): 572-581. |
[2] | Li LI, Xin WANG, Yuejing ZHANG, Lingyun JIA, Hailong PANG, Hanqing FENG. Effects of Abiotic Stresses on the Intracellular and Extracellular ATP Levels of Tobacco Suspension Cells [J]. Bulletin of Botanical Research, 2023, 43(2): 179-185. |
[3] | Shixian LIAO, Yuting WANG, Liben DONG, Yongmei GU, Fenglin JIA, Tingbo JIANG, Boru ZHOU. Function Analysis of the Transcription Factor PsnbZIP1 of Populus simonii×P. nigra in Response to Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 288-299. |
[4] | Senyao LIU, Fenglin JIA, Qing GUO, Gaofeng FAN, Boru ZHOU, Tingbo JIANG. Response Analysis of Transcription Factor PsnbHLH162 Gene in Populus simonii × P. nigra under Salt Stress and Low Temperature Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 300-310. |
[5] | Anying HUANG, Dean XIA, Yang ZHANG, Dongchen NA, Qing YAN, Zhigang WEI. Cloning and Drought Tolerance Expression Analysis of PtrWRKY51 Gene in Populus trichocarpa [J]. Bulletin of Botanical Research, 2022, 42(6): 1005-1013. |
[6] | Liran YUE, Yingjie LIU, Chenxu LIU, Yunwei ZHOU. Cloning and Functional Analysis of miR398a from Chrysanthemum× grandiflora in Response to Salt Stress [J]. Bulletin of Botanical Research, 2022, 42(6): 986-996. |
[7] | Denggao LI, Rui LIN, Qinghui MU, Na ZHOU, Yanru ZHANG, Wei BAI. Cloning and Functional Analysis of StNPR4 gene in Solanum tuberosum [J]. Bulletin of Botanical Research, 2022, 42(5): 821-829. |
[8] | Xueying WANG, Ruiqi WANG, Yang ZHANG, Cong LIU, Dean XIA, Zhigang WEI. Genome‑wide Identification and Stress Response Analysis of Cyclic Nucleotide-gated Channels(CNGC) Gene Family in Populus trichocarpa [J]. Bulletin of Botanical Research, 2022, 42(4): 613-625. |
[9] | Jiaorao CHEN, Xu XU, Zhangli HU, Shuang YANG. Recent Advances on Salt Stress Sensitivity and Related Calcium Signals in Plants [J]. Bulletin of Botanical Research, 2022, 42(4): 713-720. |
[10] | He CHENG, Shuanghui TIAN, Yang ZHANG, Cong LIU, De’an XIA, Zhigang WEI. Genome-wide Identification and Expression Analysis of nsLTP Gene Family in Populus trichocarpa [J]. Bulletin of Botanical Research, 2022, 42(3): 412-423. |
[11] | Bin WEI, Yi LI, Shiping SU. The Effect of Exogenous Proline on the Stomata of Nitraria tangutorum Leaves under Natural Drought [J]. Bulletin of Botanical Research, 2022, 42(3): 492-501. |
[12] | Feng HE, Hong-Yan DU, Pan-Feng LIU, Lu WANG, Jun QING, Lan-Ying DU. Effects of Drought Stress on Leaf Structure of Eucommia ulmoides [J]. Bulletin of Botanical Research, 2021, 41(6): 947-956. |
[13] | Dong ZHANG, Yan LIU, Han ZHANG, Zi-Jian ZHANG, Yang WANG, Mei-Cen LIU. Response of Photosynthesis and Leaf Morphological Characteristics to Drought Stress in Glycyrrhiza uralensis [J]. Bulletin of Botanical Research, 2021, 41(3): 449-457. |
[14] | Meng-Xuan REN, Yang ZHANG, Shuang WANG, Rui-Qi WANG, Cong LIU, Zhi-Gang WEI. Genome-wide Identification and Expression Analysis GATA Family of Populus trichocarpa [J]. Bulletin of Botanical Research, 2021, 41(1): 107-118. |
[15] | Xiao-Chi YU, Gui-Juan YANG, Ju-Lan DONG, Jun-Hui WANG, Wen-Jun MA, Peng ZHANG. Physiological Responses to Drought Stress of Five Speciesfrom Catalpa Scop [J]. Bulletin of Botanical Research, 2021, 41(1): 44-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||