Bulletin of Botanical Research ›› 2021, Vol. 41 ›› Issue (4): 588-595.doi: 10.7525/j.issn.1673-5102.2021.04.014
• Research report • Previous Articles Next Articles
De-Li YANG, Juan-Juan WANG, Hai-Long PANG, Kun SUN, Han-Qing FENG()
Received:
2020-09-02
Online:
2021-07-20
Published:
2021-03-24
Contact:
Han-Qing FENG
E-mail:fenghanq@nwnu.edu.cn
About author:
YANG De-Li(1994—),female,seniorengineer,mainly engaged in plantphysiology research work.
Supported by:
CLC Number:
De-Li YANG, Juan-Juan WANG, Hai-Long PANG, Kun SUN, Han-Qing FENG. Effects of Extracellular ATP on the Chitosan-induced Changes in ROS Levels and PAL Activity[J]. Bulletin of Botanical Research, 2021, 41(4): 588-595.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2021.04.014
Fig.1
The level of intracellular ROS under different treatmentsa-e.Representative pictures of ROS levels in tobacco cells with different concentrations of CTS treatment after H2DCFDA staining(a.CK;b.5 μg·mL-1 CTS;c.10 μg·mL-1CTS;d.15 μg·mL-1CTS;e.20 μg·mL-1CTS);f-j.Representative pictures of ROS levels in tobacco cells with different concentrations of exogenous ATP treatment after H2DCFDA staining(f.CK;g.10 μmol·L-1 ATP;h.20 μmol·L-1 ATP;i.30 μmol·L-1 ATP;j.40 μmol·L-1 ATP);k-n.Representative pictures of ROS levels in tobacco cells with different treatments after H2DCFDA staining(k.CK;l. 20 μmol·L-1ATP; m.10 μg·mL-1CTS;n.10 μg·mL-1CTS+20 μmol·L-1ATP)
Fig.2
The ROS levels in tobacco cells with different con-centrations of chitosan (CTS) treatmentImage J software was used to analyze the ROS fluorescence intensity.Each value represents the mean±SD of three independent experiments.The values in the control were set into 1.0 to facilitate the comparison among the different treatments. Different letters indicate significant differences among treatments at the 0.05 level;The same as below
Fig.3
Changes of PAL activity in tobacco cells under different concentrations of CTS treatmentDetermination of PAL activity by ultraviolet spectrophotometry. Each value represents the mean±SD of six samples. Different letters indicate significant differences among treatments at the 0.05 level;The same as below
1 | Katiyar D,Hemantaranjan A,Singh B.Chitosan as a promising natural compound to enhance potential physiological responses in plant:a review[J].Indian Journal of Plant Physiology,2015,20(1):1-9. |
2 | Chun S C,Chandrasekaran M.Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato[J].International Journal of Biological Macromolecules,2019,125:948-954. |
3 | Hidangmayum A,Dwivedi P,Katiyar D,et al.Application of chitosan on plant responses with special reference to abiotic stress[J].Physiology and Molecular Biology of Plants,2019,25(2):313-326. |
4 | 盛玮,薛建平,高翔,等.壳聚糖包衣对小麦种子发芽和幼苗耐盐性的影响[J].淮北煤炭师范学院学报:自然科学版,2007,28(3):39-42. |
Sheng W,Xue J P,Gao X,et al.Effects of chitosan coating on seed germination and salt-tolerance of seedlings in wheat[J].Journal of Huaibei Coal Industry Teachers College:Natural Science,2007,28(3):39-42. | |
5 | Yang F,Hu J J,Li J L,et al.Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress[J].Plant Growth Regulation,2009,58(2):131-136. |
6 | Iriti M,Faoro F.Chitosan as a MAMP,searching for a PRR[J].Plant Signaling & Behavior,2009,4(1):66-68. |
7 | Lin W L,Hu X Y,Zhang W Q,et al.Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice[J].Journal of Plant Physiology,2005,162(8):937-944. |
8 | Cabrera J C,Messiaen Y,Cambier P,et al.Size,acetylation and concentration of chitooligosaccharide elicitors determine the switch from defence involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions[J].Physiologia Plantarum,2006,127(1):44-56. |
9 | Xia X J,Zhou Y H,Shi K,et al.Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance[J].Journal of Experimental Botany,2015,66(10):2839-2856. |
10 | Khan W,Prithiviraj B,Smith D L.Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves[J].Journal of Plant Physiology,2003,160(8):859-863. |
11 | Zhang X B,Liu C J.Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids[J].Molecular Plant,2015,8(1):17-27. |
12 | De Jong F,Hanley S J,Beale M H,et al.Characterisation of the willow phenylalanine ammonia-lyase(PAL) gene family reveals expression differences compared with poplar[J].Phytochemistry,2015,117:90-97. |
13 | Trotel-Aziz P,Couderchet M,Vernet G,et al.Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea[J].European Journal of Plant Pathology,2006,114(4):405-413. |
14 | 王浩然,吕雪芹,张越,等.eATP在植物生长发育及逆境胁迫中的作用[J].电子显微学报,2017,36(1):83-90. |
Wang H R,Lü X Q,Zhang Y,et al.Role of extracellular ATP in plant growth,development and stress responses[J].Journal of Chinese Electron Microscopy Society,2017,36(1):83-90. | |
15 | Choi J,Tanaka K,Cao Y R,et al.Identification of a plant receptor for extracellular ATP[J].Science,2014,343(6168):290-294. |
16 | 芦丽娜,白晶月,戎福虎,等.胞外ATP影响ZnCl2诱导烟草悬浮细胞活性和呼吸速率的降低[J].兰州大学学报:自然科学版,2017,53(2):264-268. |
Lu L N,Bai J Y,Rong F H,et al.Extracellular ATP affects ZnCl2-induced decrease of cell activity and respiration rate of tobacco suspension cells[J].Journal of Lanzhou University:Natural Sciences,2017,53(2):264-268. | |
17 | Sun J,Zhang C L,Dang S R,et al.An ATP signalling pathway in plant cells:extracellular ATP triggers programmed cell death in Populus euphratica[J].Plant Cell Environment,2012,35(5):893-916. |
18 | 白晶月,冯汉青,戎福虎,等.细胞外ATP调节NaCl胁迫诱导的烟草悬浮细胞死亡和呼吸抑制[J].四川大学学报:自然科学版,2017,54(1):191-196. |
Bai J Y,Feng H Q,Rong F H,et al.The studies of cell death and respiration inhibition of tobacco suspension cells under NaCl stress mediated by extracellular ATP[J].Journal of Sichuan University:Natural Science Edition,2017,54(1):191-196. | |
19 | Weerasinghe R R,Swanson S J,Okada S F,et al.Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex[J].FEBS Letters,2009,583(15):2521-2526. |
20 | Song C J,Steinebrunner I,Wang X Z,et al.Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis[J].Plant Physiology,2006,140(4):1222-1232. |
21 | Kim S Y,Sivaguru M,Stacey G.Extracellular ATP in plants.Visualization,Localization,and analysis of physiological significance in growth and signaling[J].Plant Physiology,2006,142(3):984-992. |
22 | Wu S,Peiffer M,Luthe D S,et al.ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses[J].PLoS One,2012,7(7):e41947. |
23 | Komaraiah P,Ramakrishna S V,Reddanna P,et al.Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption[J].Journal of Biotechnology,2003,101(2):181-187. |
24 | Kaur N,Sharma I,Kirat K,et al.Detection of reactive oxygen species in Oryza sativa L.(Rice)[J].Bio-protocol,2016,6(24):e2061. |
25 | 王敬文,薛应龙.植物苯丙氨酸解氨酶的研究Ⅰ.植物激素对甘薯块根苯丙氨酸解氨酶和肉桂酸4-羟化酶活性变化及其伴随性的影响[J].植物生理学报,1981,7(4):373-380. |
Wang J W,Xue Y L.Studies on plant phenylalanine ammonia-lyase Ⅰ.The effect of phytohormone on the increase in phenylalanine ammonia-lyase(PAL) and cinnamic acid 4-hydroxylase(CA4H) activity and the sequence of concomitant changes of enzyme activities in sweet potato root tuber discs[J].Plant Physiology Journal,1981,7(4):373-380. | |
26 | Tanaka K,Gilroy S,Jones A M,et al.Extracellular ATP signaling in plants[J].Trends in Cell Biology,2010,20(10):601-608. |
27 | 王源超,张正光,李俊,等.H2O2参与免疫病菌90 KD蛋白激发子诱导的烟草过敏反应和系统获得抗性[J].植物生理与分子生物学学报,2003,29(3):185-191. |
Wang Y C,Zhang Z G,Li J,et al.H2O2 is involved in hypersensitive response and systemic acquired resistance induced by the 90 KD protein elicitor of Phytophthora boehmeriae[J].Journal of Plant Physiology and Molecular Biology,2003,29(3):185-191. | |
28 | Klarzynski O,Plesse B,Joubert J M,et al.Linear β-1,3 Glucans are elicitors of defense responses in tobacco[J].Plant Physiology,2000,124(3):1027-1038. |
29 | Amborabé B E,Bonmort J,Fleurat-Lessard P,et al.Early events induced by chitosan on plant cells[J].Journal of Experimental Botany,2008,59(9):2317-2324. |
30 | Lin Y F,Chen M Y,Lin H T,et al.DNP and ATP induced alteration in disease development of Phomopsis longanae Chi-inoculated longan fruit by acting on energy status and reactive oxygen species production-scavenging system[J].Food Chemistry,2017,228:497-505. |
31 | Yi C,Jiang Y M,Shi J,et al.ATP-regulation of antioxidant properties and phenolics in litchi fruit during browning and pathogen infection process[J].Food Chemistry,2010,118(1):42-47. |
32 | Chivasa S,Simonw J,Murphy A M,et al.The effects of extracellular adenosine 5′-triphosphate on the tobacco proteome[J].Proteomics,2010,10(2):235-244. |
33 | 曹佳鑫,达梦婷,庞海龙,等.胞外三磷酸腺苷对铅胁迫下植物细胞损伤和过氧化氢及其清除酶水平的调节[J].植物研究,2020,40(1):85-92. |
Cao J X,Da M T,Pang H L,et al.Effects of extracellular adenosine-5′-triphosphate on cellular damage,H2O2 content,and activities of H2O2 detoxifying enzymes under lead stress[J].Bulletin of Botanical Research,2020,40(1):85-92. | |
34 | Thomas C,Rajagopal A,Windsor B,et al.A role for ectophosphatase in xenobiotic resistance[J].The Plant Cell,2000,12(4):519-533. |
35 | Chivasa S,Murphy A M,Hamilton J M,et al.Extracellular ATP is a regulator of pathogen defence in plants[J].The Plant Journal,2009,60(3):436-448. |
36 | Deng S R,Sun J,Zhao R,et al.Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis plants[J].Plant Physiology,2015,169(1):530-548. |
[1] | Sheng ZHENG, Haixia GAO, Min SU, Shanghuan LU, Tengguo ZHANG, Guofan WU. Exogenous Sucrose Affected AtKEA1 and AtKEA2 to Regulate Root Growth of Seedling in Arabidopsis thaliana [J]. Bulletin of Botanical Research, 2023, 43(4): 562-571. |
[2] | Li LI, Xin WANG, Yuejing ZHANG, Lingyun JIA, Hailong PANG, Hanqing FENG. Effects of Abiotic Stresses on the Intracellular and Extracellular ATP Levels of Tobacco Suspension Cells [J]. Bulletin of Botanical Research, 2023, 43(2): 179-185. |
[3] | Yan WU, Sai LI, Kexin WU, Liqiang MU. Differences in Leaf Metabolism of Wild Rosa acicularis and Rosa acicularis ‘Luhe’ Based on GC-MS [J]. Bulletin of Botanical Research, 2022, 42(6): 1070-1078. |
[4] | Ying LIU, Jiayi WU, Ling JIN, Qianru JI, Yujie FU, Dewen LI. Effects of Exogenous NO on Soil Nutrient Content and Seedling Growth Characteristics from Potted Catharanthus roseus under Light-shading Stress [J]. Bulletin of Botanical Research, 2022, 42(6): 1088-1095. |
[5] | Tian SHI, Zhongmei MO, Min WU, Cai ZHAO. Phylogeography of Medicinal and Edible Homologous Plant Allium macrostemon [J]. Bulletin of Botanical Research, 2022, 42(4): 574-583. |
[6] | Qingqing ZHANG, Zaizhi ZHOU, Guihua HUANG, Weiwei ZHAO, Xiyang WANG, Guang YANG, Gaofeng LIU. Effects of Fertilizing on Trees Growth and Understory Vegetation of Young Teak Plantation [J]. Bulletin of Botanical Research, 2022, 42(4): 694-703. |
[7] | Wenjing WANG, Hongfan CHEN, Guojun SHAO, Hong LIAO, Jianli ZHAO, Qingjun LI. Nectary Structure of Selfing and Outcrossing Speciesin Roscoea [J]. Bulletin of Botanical Research, 2022, 42(3): 364-372. |
[8] | Ying WANG, Yujie ZHANG, Zihui JIAO, Xueli LI, Kai WANG, Xiaowei DA, Kun SUN, Hui ZHANG. Preliminary Study on Cross Fertility in ‘Kushui’ Rose [J]. Bulletin of Botanical Research, 2022, 42(3): 403-411. |
[9] | Bin WEI, Yi LI, Shiping SU. The Effect of Exogenous Proline on the Stomata of Nitraria tangutorum Leaves under Natural Drought [J]. Bulletin of Botanical Research, 2022, 42(3): 492-501. |
[10] | Shanshan ZHANG, Chunming YUAN. Effects of Soil Moisture and Light Intensity on Growth and Photosynthetic Characteristics of Pterospermum kingtungense Seedlings [J]. Bulletin of Botanical Research, 2022, 42(3): 502-511. |
[11] | Yibo Yin, Jixiang Li, Yingjie Guo, Ziting Lu, Ying Xiao, Hualing Liu, Yaguang Zhan, Fansuo Zeng. Variation of Lignin Content and Association Analysis of FmPAL Nucleotide Polymorphism in Progenies of Interspecific Hybrids of Fraxinus [J]. Bulletin of Botanical Research, 2022, 42(2): 191-199. |
[12] | Jiaben Zhou, Caidan Rezeng, Maoxian Re, Cairang Limao. Separation and Purification of Three Active Components from Dracocephalum tanguticum Maxim. by High-Speed Counter-current Chromatography Combined with Semi-Preparative High Performance Liquid Chromatography [J]. Bulletin of Botanical Research, 2022, 42(2): 252-258. |
[13] | Qing-Yan GAI, Zi-Ying WANG, Yu-Jie FU, Jiao JIAO, Hui-Mei WANG, Yao LU, Jing LIU, Jin-Xian FU, Xiao-Jie XU, Lan YAO. Effects of UV-B Radiation on Phenolic Acid Accumulation and Physiological and Biochemical Characters in 84K Poplar [J]. Bulletin of Botanical Research, 2021, 41(6): 878-887. |
[14] | Xuan WANG, Zhi-Xiong LIU. Megasporogenesis and Microsporogenesis and Development of Female and Male Gametophytes in Mutants lpls with Long Pistil and Long Stamen from Fagopyrum esculentum Moench [J]. Bulletin of Botanical Research, 2021, 41(6): 921-927. |
[15] | Yi-Liang LI, Fen-Cheng ZHAO, Yang LIU, Sui-Ying ZHONG, Chang-Ming LIN, Zhi-Qiang TAN, Fu-Ming LI, Fang-Yan LIAO, Hui-Shan WU, Wen-Bin GUO, Zhe WANG. Relationship Between Parental Genetic Distance and Heterosis of Growth Traitsin Pinus elliottii × P.caribaea var. Hondurensis Based on SNP marker [J]. Bulletin of Botanical Research, 2021, 41(5): 738-743. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||