Bulletin of Botanical Research ›› 2025, Vol. 45 ›› Issue (1): 98-110.doi: 10.7525/j.issn.1673-5102.2025.01.011
• Original Paper • Previous Articles Next Articles
Chu HUANG1, Mingyue HE1, Meile SUN1, Yanhong CHEN1, Huizhen WANG1,2()
Received:
2024-09-12
Online:
2025-01-20
Published:
2025-01-23
Contact:
Huizhen WANG
E-mail:whz1974828@163.com
CLC Number:
Chu HUANG, Mingyue HE, Meile SUN, Yanhong CHEN, Huizhen WANG. Silicon-mediated Regulation on Polysaccharides Synthesis of Codonopsis pilosula under Drought Stress Based on EMP and TCA cycle Pathways[J]. Bulletin of Botanical Research, 2025, 45(1): 98-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2025.01.011
Table 1
Silicon-mediated effects on enzymes activity in polysaccharides synthesis pathway of C. pilosula under drought stress
酶 Enzyme | 胁迫时间 Stress time/d | 不同处理下各部位的酶活性 Enzyme activity of different parts under different treatments | |||||
---|---|---|---|---|---|---|---|
CK | D | Si+D | |||||
叶Leaves | 根Roots | 叶Leaves | 根Roots | 叶Leaves | 根Roots | ||
蔗糖磷酸合成酶 SPS/(U·mg-1) | 7 | 10.90±0.16 | 15.59±0.17 | 12.10±0.88 | 13.37±2.13 | 13.40±0.68* | 15.61±1.33 |
14 | 12.52±0.60** | 14.47±0.67 | 8.77±0.83 | 13.32±1.05 | 10.40±0.45* | 14.70±2.08 | |
21 | 9.42±0.68 | 14.55±1.30 | 8.31±1.38 | 13.04±0.53 | 8.14±1.39 | 16.09±1.05** | |
蔗糖合成酶 SS/(U·mg-1) | 7 | 18.80±0.38** | 19.79±3.52 | 15.67±1.37 | 21.38±2.37 | 17.33±0.71 | 21.47±1.51 |
14 | 17.76±0.29 | 21.49±1.28 | 16.00±1.83 | 18.62±2.43 | 18.82±1.80 | 20.53±1.63 | |
21 | 17.33±0.57** | 18.59±2.04 | 12.28±0.31 | 15.54±1.89 | 22.58±1.66** | 18.75±1.25 | |
酸性转化酶 AI/(U·mg-1) | 7 | 164.93±5.38** | 94.38±13.81 | 134.35±8.62 | 109.09±18.85 | 130.67±14.06 | 90.03±14.81 |
14 | 130.38±9.81 | 90.80±11.72 | 131.16±12.41 | 76.09±5.87 | 139.77±10.72 | 77.35±3.55 | |
21 | 131.25±14.02 | 76.48±8.50 | 128.35±3.57 | 63.22±12.44 | 146.25±1.02* | 81.03±1.54* | |
中性转化酶 NI/(U·mg-1) | 7 | 80.79±4.40 | 81.35±1.32 | 73.21±3.54 | 78.09±3.66 | 75.09±5.20 | 87.75±2.91** |
14 | 79.26±7.81 | 96.85±5.51 | 87.09±5.71 | 91.01±5.76 | 77.23±6.84 | 94.67±1.85 | |
21 | 81.55±6.17 | 98.02±6.72 | 83.68±3.21 | 95.33±4.04 | 91.31±6.87 | 92.48±2.32 | |
α-淀粉酶 α-AL/(U·g-1) | 7 | 4.57±0.22* | 5.05±0.15* | 3.79±0.40 | 4.39±0.18 | 4.66±0.48* | 4.57±0.40 |
14 | 6.17±0.31 | 4.96±0.20** | 5.88±0.25 | 4.35±0.13 | 6.33±0.33 | 5.12±0.05** | |
21 | 7.52±0.49** | 4.06±0.26 | 6.13±0.41 | 3.47±0.10 | 6.08±0.35 | 4.06±0.46 | |
β-淀粉酶 β-AL/(U·g-1) | 7 | 20.98±0.76 | 15.08±1.61 | 19.22±1.01 | 15.79±2.22 | 20.56±1.47 | 19.95±3.42 |
14 | 21.75±1.90** | 24.50±0.70 | 15.28±1.88 | 23.16±0.55 | 22.89±1.13** | 22.43±1.21 | |
21 | 19.47±2.92 | 21.75±1.92** | 18.75±1.02 | 17.27±0.50 | 20.08±2.47 | 16.43±0.73 | |
结合态淀粉合成酶 GBSS/(U·g-1) | 7 | 2.67±0.18** | 2.40±0.12 | 3.20±0.10 | 2.59±0.08 | 2.85±0.21* | 2.38±0.17 |
14 | 2.84±0.10* | 2.36±0.20 | 3.18±0.17 | 2.52±0.04 | 2.83±0.19* | 2.21±0.18 | |
21 | 3.01±0.18 | 1.87±0.05* | 3.17±0.09 | 2.18±0.06 | 2.79±0.04** | 2.23±0.18 | |
可溶性淀粉合成酶 SSS/(U·g-1) | 7 | 5.81±0.49** | 6.62±0.25 | 7.59±0.72 | 6.59±0.23 | 6.64±0.29 | 6.12±0.37 |
14 | 6.65±0.16 | 5.24±0.04 | 6.93±0.34 | 5.58±0.18 | 6.36±0.11* | 5.10±0.25* | |
21 | 6.49±0.15** | 5.49±0.25 | 7.35±0.12 | 5.41±0.18 | 6.49±0.27** | 5.32±0.14 | |
腺苷二磷酸葡萄糖焦磷酸化酶 AGPase/(U·g-1) | 7 | 176.99±2.11* | 153.67±7.96 | 193.85±6.80 | 159.26±4.02 | 199.97±7.58 | 163.36±10.15 |
14 | 195.33±5.90 | 133.99±8.30 | 201.22±8.58 | 143.92±4.47 | 190.52±8.39 | 127.73±14.59 | |
21 | 161.99±5.55* | 129.82±1.56 | 171.54±4.87 | 129.08±8.62 | 145.43±1.89** | 128.78±10.43 |
Table 2
Silicon-mediated effects on activity of the enzymes in EMP and TCA cycle under drought stress
酶 Enzyme | 胁迫时间 Stress time/d | 不同处理下各部位的酶活性 Enzyme activity of different parts under treatments | |||||
---|---|---|---|---|---|---|---|
CK | D | Si+D | |||||
叶Leaves | 根Roots | 叶Leaves | 根Roots | 叶Leaves | 根Roots | ||
己糖激酸 HK/(U·g-1) | 7 | 259.70±21.99** | 46.75±5.78 | 162.13±33.65 | 34.87±6.33 | 129.48±14.00 | 47.49±7.41 |
14 | 134.30±11.20** | 41.92±0.64 | 100.27±8.02 | 33.02±2.57 | 96.09±5.60 | 38.21±7.58 | |
21 | 130.22±4.85** | 32.65±1.28 | 186.98±19.50 | 33.02±6.13 | 218.89±18.03* | 37.84±2.23 | |
磷酸果糖激酶 PFK/(U·g-1) | 7 | 337.35±55.88* | 309.45±14.95** | 222.00±34.20 | 404.70±18.46 | 309.45±51.68 | 414.60±40.31 |
14 | 254.10±50.74 | 485.85±33.97 | 265.05±17.24 | 453.75±54.15 | 219.60±13.28 | 491.70±19.74 | |
21 | 358.80±18.22 | 486.30±27.03* | 293.70±43.11 | 436.50±29.52 | 255.75±40.50 | 498.75±14.18* | |
丙酮酸激酶 PK/(U·g-1) | 7 | 0.33±0.02 | 0.26±0.02 | 0.36±0.02 | 0.30±0.03 | 0.32±0.00* | 0.21±0.02** |
14 | 0.30±0.03 | 0.37±0.00** | 0.29±0.00 | 0.32±0.02 | 0.28±0.03 | 0.25±0.01** | |
21 | 0.27±0.02 | 0.26±0.01** | 0.26±0.01 | 0.30±0.02 | 0.32±0.02** | 0.39±0.01** | |
丙酮酸脱氢酶 PDH/(U·g-1) | 7 | 741.56±21.62** | 537.04±9.50** | 865.21±43.54 | 736.40±9.02 | 870.63±10.99 | 689.88±24.40* |
14 | 811.59±22.37** | 676.12±44.02 | 720.63±17.05 | 657.07±25.07 | 682.78±35.11 | 533.68±24.72** | |
21 | 647.83±19.94** | 546.47±30.09** | 593.76±19.33 | 736.01±32.69 | 671.02±11.96** | 695.44±31.04 | |
异柠檬酸脱氢酶 ICD/(U·g-1) | 7 | 28.72±0.64* | 22.63±0.28* | 33.55±3.26 | 21.64±0.27 | 31.60±1.83 | 27.18±0.73** |
14 | 30.80±0.66** | 26.77±0.75 | 28.10±0.51 | 26.20±0.75 | 26.97±1.04 | 25.99±0.74 | |
21 | 25.93±0.59** | 22.91±1.22* | 24.32±0.58 | 27.75±2.11 | 26.62±0.36** | 27.35±0.92 | |
琥珀酸脱氢酶 SDH/(U·g-1) | 7 | 79.63±1.70** | 153.33±2.94 | 56.30±2.31 | 147.04±4.21 | 71.00±2.06** | 109.26±4.62** |
14 | 70.00±5.77 | 103.70±6.51 | 73.70±4.62 | 104.81±11.78 | 73.70±4.62 | 87.78±3.33* | |
21 | 66.67±3.85** | 112.96±6.70** | 81.85±5.70 | 86.67±2.22 | 56.30±2.80** | 98.52±7.06* | |
苹果酸脱氢酶 MDH/(U·g-1) | 7 | 1.54±0.03** | 21.81±1.06 | 2.05±0.06 | 20.19±1.11 | 1.43±0.08** | 20.08±1.22 |
14 | 1.34±0.12* | 25.16±1.09 | 1.55±0.10 | 24.69±0.40 | 1.33±0.16* | 19.81±1.82** | |
21 | 0.82±0.04** | 16.76±0.26** | 1.42±0.10 | 25.69±2.03 | 1.10±0.11* | 18.73±0.70** |
1 | RIZWAN M,ALI S, IBRAHIM M,et al.Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review[J].Environmental Science and Pollution Research,2015,22(20):15416-15431. |
2 | KLEINWÄCHTER M, SELMAR D.New insights explain that drought stress enhances the quality of spice and medicinal plants:potential applications[J].Agronomy for Sustainable Development,2015,35(1):121-131. |
3 | WANG L S, LI W L, MA L,et al.Salt stress changes chemical composition in Limonium bicolor(Bag.) Kuntze,a medicinal halophytic plant[J].Industrial Crops and Products,2016,84:248-253. |
4 | FAHAD S, HUSSAIN S, MATLOOB A,et al.Phytohormones and plant responses to salinity stress:a review[J].Plant Growth Regulation,2015,75:391-404. |
5 | LIU P, YIN L N, WANG S W,et al.Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L[J].Environmental and Experimental Botany,2015,111:42-51. |
6 | 柳福智,杨军.外源蔗糖对盐胁迫条件下甘草幼苗生长及有效成分含量的影响[J].中国中药杂志,2015, 40(22):4384-4388. |
LIU F Z, YANG J.Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions[J].China Journal of Chinese Materia Medica,2015,40(22):4384-4388. | |
7 | ZHANG B, ZHENG L P, WANG J W.Nitric oxide elicitation for secondary metabolite production in cultured plant cells[J].Applied Microbiology and Biotechnology,2012,93(2):455-466. |
8 | ROMERO-RODRÍGUEZ A, RUIZ-VILLAFÁN B, TIERRAFRÍA V H,et al.Carbon catabolite regulation of secondary metabolite formation and morphological differentiation in Streptomyces coelicolor [J].Applied Biochemistry and Biotechnology,2016,180(6):1152-1166. |
9 | SCOGINGS P F, HJÄLTÉN J, SKARPE C,et al.Nutrient and secondary metabolite concentrations in a savanna are independently affected by large herbivores and shoot growth rate[J].Plant Ecology,2014,215(1):73-82. |
10 | 秦嗣军,吕德国,李志霞,等.水分胁迫对东北山樱幼苗呼吸等生理代谢的影响[J].中国农业科学,2011,44(1):201-209. |
QIN S J, LÜ D G, LI Z X,et al.Effects of water stress on respiration and other physiological metabolisms of Cerasus sachalinensis Kom. seedlings[J].Scientia Agricultura Sinica,2011,44(1):201-209. | |
11 | ZHONG M, YUAN Y H, SHU S,et al.Effects of exogenous putrescine on glycolysis and Krebs cycle metabolism in cucumber leaves subjected to salt stress[J].Plant Growth Regulation,2016,79(3):319-330. |
12 | 张占田,陈海宁,樊兆博,等.硅对植物生长发育的影响及应用研究[J].烟台果树,2023(4):28-30. |
ZHANG Z T, CHEN H N, FAN Z B,et al.Research on the effects and applications of silicon on plant growth and development[J].Yantai Fruits,2023(4):28-30. | |
13 | 何静,朱婷,黄雪玲,等.硅提高植物抗旱性的生理机制研究进展[J].热带亚热带植物学报,2022,30(6):813-822. |
HE J, ZHU T, HUANG X L,et al.Research progress on physiological mechanism of silicon on enhancing plant drought resistance[J].Journal of Tropical and Subtropical Botany,2022,30(6):813-822. | |
14 | MAJUMDAR A, UPADHYAY M K, KUMAR J S,et al.Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin[J].Ecotoxicology and Environmental Safety,2019,180:770-779. |
15 | ABROL E, VYAS D, KOUL S.Metabolic shift from secondary metabolite production to induction of anti-oxidative enzymes during NaCl stress in Swertia chirata Buch.Ham.[J].Acta Physiologiae Plantarum,2012,34(2):541-546. |
16 | 孟元发.外源硅对苜蓿盐胁迫的缓解效应及调控机 理[D].呼和浩特:内蒙古大学,2021. |
MENG Y F.Alleviation effects and mechanisms of exogenous silicon on salt stress-induced damage in alfalfa[D].Hohhot:Inner Mongolia University,2021. | |
17 | 酆如.外源硅对水分胁迫下番茄碳氮代谢的影响[D].杨凌:西北农林科技大学,2017. |
FENG R.Effect of exogenous silicon on carbon and nitrogen metabolism in tomato under simulated drought stress[D].Yangling:Northwest A&F University,2017. | |
18 | 张新慧,郎多勇,白长财,等.外源硅对不同程度盐胁迫下甘草种子萌发和幼苗生长发育的影响[J].中草药,2014,45(14):2075-2079. |
ZHANG X H, LANG D Y, BAI C C,et al.Effects of silicon addition on seed germination and seedling growth of Glvarrhiza uralensis under salt stress[J].Chinese Traditional and Herbal Drugs,2014,45(14):2075-2079. | |
19 | 李英浩.外源硅提高燕麦秆锈病抗性的生理及分子调控机制研究[D].呼和浩特:内蒙古农业大学,2023. |
LI Y H.Study on the physiological and molecular regulation mechanism of exogenous silicon-improving resistance of oat to stem rust[D].Hohhot:Inner Mongolia Agricultural University,2023. | |
20 | 段元杰,孟富宣,杨玉皎,等.PEG模拟干旱对鲜食木薯华南9号幼苗生长的影响[J].湖北农业科学,2020,59(4):42-44. |
DUAN Y J, MENG F X, YANG Y J,et al.Effects of PEG simulated drought on the growth of fresh-eating Manihot esculenta Crantz SC9 seedlings[J].Hubei Agricultural Sciences,2020,59(4):42-44. | |
21 | 陈彦宏.基于碳代谢研究干旱对党参多糖积累的调控机制[D].兰州:甘肃中医药大学,2024. |
CHEN Y H.Study on the regulation mechanism of drought on polysaccharide accumulation of Codonopsis pilosula based on carbon metabolism[D].Lanzhou:Gansu University of Chinese Medicine,2024. | |
22 | 栗锦鹏.干旱胁迫下党参药效物质积累的生理机制研究[D].兰州:甘肃中医药大学,2023. |
LI J P.Research on physiological mechanism of the accumulation of the effective substances of Codonopsis pilosula under drought stress[D].Lanzhou:Gansu University of Chinese Medicine,2023. | |
23 | 孙晓琛.基于转录组测序分析干旱胁迫下党参多糖合成机制[D].兰州:甘肃中医药大学,2022. |
SUN X C.Analysis of polysaccharide biosynthesis of Codonopsis pilosula under drought stress based on transcriptome sequencing[D].Lanzhou:Gansu University of Chinese Medicine,2022. | |
24 | 周一平,张玉革,马望,等.氮添加和干旱对呼伦贝尔草原5种植物性状的影响[J].生态环境学报,2020, 29(1):41-48. |
ZHOU Y P, ZHANG Y G, MA W,et al.Effects of nitrogen addition and water reduction on the traits of five plants in Hulunbeir Grassland[J].Ecology and Environmental Sciences,2020,29(1):41-48. | |
25 | 杨紫薇.拟南芥AtSUC4与AtPsaL的叶绿体定位机制的研究[D].广州:华南农业大学,2017. |
YANG Z W.Subcellular localization mechanism of AtSUC4 and AtPsaL in Arabidopsis thaliana chloroplast[D].Guangzhou:South China Agricultural University,2017. | |
26 | 罗洁.叶面喷施纳米硅对干旱胁迫下黄瓜幼苗生长及生理的影响[J].农业技术与装备,2023(9):12-15. |
LUO J.Effects on the seedling growth and physiology of cucumber under drought stress by spraying nano-silicon on leaf surface[J].Agricultural Technology & Equipment,2023(9):12-15. | |
27 | 李艳梅,廖上强,张琳,等.喷施钙硅对设施春茬番茄根系生长、NPK吸收及产量和水分利用的影响[J].干旱地区农业研究,2021,39(1):143-147. |
LI Y M, LIAO S Q, ZHANG L,et al.Effects of calcium and silicon on the root growth,NPK uptake,yield and water use efficiency of spring-grown tomatoes[J].Agricultural Research in the Arid Areas,2021,39(1):143-147. | |
28 | 郑世英,郑晓彤,耿建芬,等.硅对干旱胁迫下野生大豆幼苗生长和生理特性的影响[J].大豆科学,2018,37(2):263-267. |
ZHENG S Y, ZHENG X T, GENG J F,et al.Effects of silicon on growth and physiological characteristics of wild soybean seedlings under drought stress[J].Soybean Science,2018,37(2):263-267. | |
29 | 尹莲,孙玉东,罗德旭,等.高温胁迫对大白菜类胡萝卜素的影响[J].江西农业学报,2024,36(1):42-48. |
YIN L, SUN Y D, LUO D X,et al.Effect of high temperature stress on carotenoids of Chinese cabbage[J].Acta Agriculturae Jiangxi,2024,36(1):42-48. | |
30 | 李爽.外源硅对干旱胁迫下大叶女贞光合作用及叶绿素荧光特性的影响[J].江苏农业科学,2019,47(22):174-178. |
LI S.Effects of exogenous silicon on photosynthesis and fluorescence characteristics of Ligustrun lucidum under drought stress[J].Jiangsu Agricultural Sciences,2019,47(22):174-178. | |
31 | 曹守波.党参多糖合成相关基因筛选及Cp1-SST真核表达载体构建[D].太原:山西医科大学,2020. |
CAO S B.Screening of genes related to Codonopsis radix polysaccharide synthesis and construction of eukaryotic expression vector of Cp1-SST[D].Taiyuan:Shanxi Medical University,2020. | |
32 | 张冉.水稻次生细胞壁超微结构与木质纤维高效酶解机制的研究[D].武汉:华中农业大学,2020. |
ZHANG R.Characterization of secondary cell wall ultrastructure that determines lignocellulose enzymatic digestibility in rice[D].Wuhan:Huazhong Agricultural University,2020. | |
33 | 徐美蓉,李晓蓉,丁文姣,等.甘肃不同区域党参多糖含量的提取方法与生物活性研究[J].甘肃农业科技,2021,52(11):4-11. |
XU M R, LI X R, DING W J,et al.Extraction method and biological activity of polysaccharides from Codonopsis pilosula in different regions of Gansu[J].Gansu Agricultural Science and Technology,2021,52(11):4-11. | |
34 | 武子璇,王欣,张永超,等.硅对盐胁迫下藜麦幼苗生长及抗氧化酶活性的影响[J].现代农业科技,2024(11):1-6. |
WU Z X, WANG X, ZHANG Y C,et al.Effect of silica on growth and antioxidant enzyme activity of quinoa under salt stress[J].Modern Agricultural Science and Technology,2024(11):1-6 | |
35 | 蒙彦宇,王健,李云,等.烟嘧磺隆对甜玉米糖酵解和三羧酸循环途径中关键物质的影响[J].江苏农业科学,2022,50(21):115-121. |
MENG Y Y, WANG J, LI Y,et al.Influence of nicosulfuron on glycolysis and TCA pathway related substances in sweet maize[J].Jiangsu Agricultural Sciences,2022, 50(21):115-121. | |
36 | 王小丫,张仲兴,高彦龙,等.盐碱胁迫下苹果矮化砧木M9-T337对外源柠檬酸(CA)的响应[J].果树学报,2024,41(2):252-265. |
WANG X Y, ZHANG Z X, GAO Y L,et al.Response of apple dwarfing rootstocks M9-T337 to exogenous citric acid(CA) under saline and alkaline stresses[J].Journal of Fruit Science,2024,41(2):252-265. |
[1] | Yuping LIU, Mingjun YU, Yu ZHANG, Xu SU, Xiaoli LI, Qian YANG, Xueli LIU. Cloning and Drought Tolerance Functional Validation of PvAQP Gene in Psammochloa villosa (Poaceae) [J]. Bulletin of Botanical Research, 2024, 44(6): 914-925. |
[2] | Xinyi YU, Huiyue JI, Pingping LU, Jiayu ZHOU, Hai LIAO. The Bioinformatic Analysis on the Plant Isopentenyl Pyrophosphate Isomerase [J]. Bulletin of Botanical Research, 2024, 44(5): 774-782. |
[3] | Xiaoqian WU, Xu HE, Jinghui GAO, Shuang LI. Germplasm Innovation and Characteristic Analysis of Transgenic PsnNAC007Populus simonii×P. nigra with High Drought Tolerance [J]. Bulletin of Botanical Research, 2024, 44(3): 349-360. |
[4] | Bin WEI, Yi LI, Shiping SU. The Effect of Exogenous Proline on the Stomata of Nitraria tangutorum Leaves under Natural Drought [J]. Bulletin of Botanical Research, 2022, 42(3): 492-501. |
[5] | Feng HE, Hong-Yan DU, Pan-Feng LIU, Lu WANG, Jun QING, Lan-Ying DU. Effects of Drought Stress on Leaf Structure of Eucommia ulmoides [J]. Bulletin of Botanical Research, 2021, 41(6): 947-956. |
[6] | Shuang-Hui TIAN, He CHENG, Yang ZHANG, Cong LIU, De-An XIA, Zhi-Gang WEI. Genome-wide Identification and Expressional Analysis of Carotenoid Cleavage Dioxygenases(CCD) Gene Family in Populus trichocarpa under Drought and Salt Stress [J]. Bulletin of Botanical Research, 2021, 41(6): 993-1005. |
[7] | Dong ZHANG, Yan LIU, Han ZHANG, Zi-Jian ZHANG, Yang WANG, Mei-Cen LIU. Response of Photosynthesis and Leaf Morphological Characteristics to Drought Stress in Glycyrrhiza uralensis [J]. Bulletin of Botanical Research, 2021, 41(3): 449-457. |
[8] | Xiao-Chi YU, Gui-Juan YANG, Ju-Lan DONG, Jun-Hui WANG, Wen-Jun MA, Peng ZHANG. Physiological Responses to Drought Stress of Five Speciesfrom Catalpa Scop [J]. Bulletin of Botanical Research, 2021, 41(1): 44-52. |
[9] | Wen-Hai HU, Xiao-Hong YAN, Xiao-Hong LI, Zao-Gui CAO. Effects of 24-Epibrassinolide on the Chlorophyll Fluorescence Transient in Leaves of Pepper under Drought Stress [J]. Bulletin of Botanical Research, 2021, 41(1): 53-59. |
[10] | FANG Zi-Wen, ZHANG Xia-Yan, TAO Jun, ZHAO Da-Qiu. Ameliorative Effect of Ferulic Acid on Paeonia ostii under Drought Stress [J]. Bulletin of Botanical Research, 2020, 40(3): 353-359. |
[11] | QIAO Bin-Jie, WANG De-Qiu, GAO Hai-Yan, LI Zhao-Min, GE Li-Li, DING Wen-Ya, ZHAO Xi-Yang. Photosynthetic and Stomatal Morphological Variation of Poplar Clones in Seedling Stage under Drought Stress [J]. Bulletin of Botanical Research, 2020, 40(2): 177-188. |
[12] | ZHAO Min, HAO Wen-Ying, NING Xin-Zhe, HAO Long-Fei, YAN Hai-Xia, MU Ya-Nan, BAI Shu-Lan. Screening of Excellent Ectomycorrhizal Fungi-tree for Drought Resistant with Pinus sylvestris var. mongolica [J]. Bulletin of Botanical Research, 2020, 40(1): 133-140. |
[13] | JI Li, HAN Jiao, WANG Fang, WANG Jun, SONG Di, ZHANG Li-Jie, QI Yong-Hui, YANG Yu-Chun. Effects of Drought Stress on Photosynthetic and Physiological Characteristics of Juglans mandshurica Seedlings in Different Soil Substrates [J]. Bulletin of Botanical Research, 2019, 39(5): 722-732. |
[14] | JIN Jiao-Jiao, SONG Zi-Wen, MA Xiao-Yu, SUN Guo-Yu, LI Kai-Long. Morphological and Physiological Responses of Populus ussuriensis Kom. to Drought Stress [J]. Bulletin of Botanical Research, 2019, 39(4): 490-496. |
[15] | ZHAO Min, WANG Yue-Xuan, XU Yun-Fei, ZHAO Qi-An, LIU Bo, YANG Ning. Relationship between H2S and ABA Signaling in Arabidopsis thaliana under Drought Stress [J]. Bulletin of Botanical Research, 2019, 39(1): 104-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||