Bulletin of Botanical Research ›› 2022, Vol. 42 ›› Issue (2): 234-242.doi: 10.7525/j.issn.1673-5102.2022.02.008
• Molecular biology • Previous Articles Next Articles
Wang Xie, Tianjing Li, Xinyao Li, Fenming Yang, Yin’an Yan, Yongfeng Gao()
Received:
2021-03-04
Online:
2022-03-20
Published:
2022-02-22
Contact:
Yongfeng Gao
E-mail:gaoyongfeng0263@gmail.com
About author:
Xie Wang(1995—),female,master,mainly engaged in tree resilience and genetic improvement.
Supported by:
CLC Number:
Wang Xie, Tianjing Li, Xinyao Li, Fenming Yang, Yin’an Yan, Yongfeng Gao. Identification of PeNAC121 Gene Promoter and Stress Response Pattern Analysis in Populus euphratica[J]. Bulletin of Botanical Research, 2022, 42(2): 234-242.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2022.02.008
Table 1
Primers used in this study
名称 Name | 序列 Sequence(5′—3′) | 功能 Function |
---|---|---|
PeNAC121 Pro-F0 | GGATTTATCAAGATTCAAGCCT | 克隆PeNAC121启动子 Cloning NAC121 gene promoter |
PeNAC121 Pro-R0 | TTACAGGGTGGAGGTGAGC | |
PeNAC121 Pro-F1 | AAGCTTAAGAGTGGGGCAGATGATACC | |
PeNAC121 Pro-R1 | GGATCCATCGTTGCAGTCATTGCACC | |
qRT-PeUBQ-F | CCAAGCCCAAGAAGATCAAGC | 检测PeNAC121组织表达表达模式 Detecting the tissue dexpression patterns of PeNAC121 gene |
qRT-PeUBQ-R | GCACCGCACTCAGCATTAGG | |
qRT-PeNAC121-F | CTCACCTCCACCCTGTAATGC | |
qRT-PeNAC121-R | CCTTCCCCTCCAAATGCTC | |
NPTII-F | TCTCATGCTGGAGTTCTTCGC | 鉴定转基因阳性植株 Checking transgenic positive plants |
NPTII-R | GTCACCGACTTGAGCCATTTG |
Table 2
The Cis-acting elements in the isolated PeNAC121 promoter region
元件 Element | 功能 Function | 核心序列 Core sequence | 数量 Amount | 位置 Position |
---|---|---|---|---|
非生物胁迫响应元件 Abiotic stress responsive elements | ||||
LTR | 低温响应元件Low temperature response element | CCGAAA | 1 | -1 802(+) |
MBS | 参与干旱诱导MYB结合位点 Participate in drought induced MYB binding site | CAACTG | 1 | -63(-) |
ARE | 抗氧化反应元件 Antioxidant reaction element | AAACCA | 2 | -7(-) -1 401(-) |
TC-rich repeats | 防卫和胁迫响应顺式作用元件 Cis-acting element involved in defense and stress responsiveness | ATTCTCTAAC GTTTTCTTAC | 2 | -1 325(+) -1 782(-) |
WUN-motif | 创伤响应元件 Wound-responsive element | TTATTACAT TTATTACAT | 2 | -1 421(-) -1 365(-) |
光响应元件 Light responsive elements | ||||
Box 4 | 参与光响应部分保守DNA组件 Part of a conserved DNA module involved in light responsiveness | ATTAAT | 4 | -1 050(+) -887(+) -845(+) -613(+) |
G-Box | 参与光响应的顺式调控元件 Cis-acting regulatory element involved in light responsiveness | CACGTT | 1 | -1 732(+) |
G-box | 参与光响应的顺式调控元件 Cis-acting regulatory element involved in light responsiveness | TACGTG | 1 | -1 104(+) |
GT1-motif | 光响应元件Light responsive element | GGTTAA | 1 | -1 806(-) |
TCT-motif(光反应元件) | 光响应元件Light responsive element | TCTTAC | 2 | -1 321(+) -1 327(-) |
GATA-motif | 光响应元件Light responsive element | GATAGGG | 1 | -1 549(+) |
MRE(涉及光反应的MYB结合位点) | 涉及光反应的MYB结合位点 MYB binding sites involved in light reactions | AACCTAA | 1 | -834(-) |
chs-CMA1a(光反应元件) | 光响应元件Light responsive element | TTACTTAA | 1 | -1 919(+) |
植物激素响应元件 Phytohormone responsive elements | ||||
TATC-box(赤霉素反应作用元件) | 赤霉素响应顺式作用元件 Cis-acting element involved in gibberellin responsiveness | TATCCCA | 1 | -1 031(+) |
ABRE | 脱落酸响应顺式作用元件 Cis-acting element involved in the abscisic acid responsiveness | ACGTG | 2 | -1 103(+) -1 727(-) |
1 | 陈永快,王涛,廖水兰,等.逆境及生长调节剂对作物抗逆性的影响综述[J].江苏农业科学,2019,47(23):68-72. |
Chen Y K,Wang T,Liao S L,et al.Effects of stress and growth regulators on stress resistance of crops:a review[J].Jiangsu Agricultural Sciences,2019,47(23):68-72. | |
2 | 何凌仙子,贾志清,刘涛,等.植物适应逆境胁迫研究进展[J].世界林业研究,2018,31(2):13-18. |
He L X Z,Jia Z Q,Liu T,et al.Research progress in plants adaptability towards adversity stress[J].World Forestry Research,2018,31(2):13-18. | |
3 | Shen S Y,Zhang Q R,Shi Y,et al.Genome-wide analysis of the NAC domain transcription factor gene family in Theobroma cacao[J].Genes,2020,11(1):35. |
4 | Baillo E H,Kimotho R N,Zhang Z B,et al.Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J].Genes,2019,10(10):771. |
5 | 段俊枝,李莹,赵明忠,等.NAC转录因子在植物抗非生物胁迫基因工程中的应用进展[J].作物杂志,2017(2):14-22. |
Duan J Z,Li Y,Zhao M Z,et al.Progress on application of NAC transcription factors in plant abiotic tolerance genetic engineering[J].Crops,2017(2):14-22. | |
6 | Fujita M,Fujita Y,Maruyama K,et al.A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J].The Plant Journal,2004,39(6):863-876. |
7 | Xu Z Y,Kim S Y,Hyeon D Y,et al.The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses[J].The Plant Cell,2013,25(11):4708-4724. |
8 | Liu G Z,Li X L,Jin S X,et al.Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J].PLoS One,2014,9(1):e86895. |
9 | Hong Y B,Zhang H J,Huang L,et al.Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J].Frontiers in Plant Science,2016,7:4. |
10 | Takasaki H,Maruyama K,Kidokoro S,et al.The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J].Molecular Genetics and Genomics,2010,284(3):173-183. |
11 | Jeong J S,Kim Y S,Redillas M C F R,et al.OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J].Plant Biotechnology Journal,2013,11(1):101-114. |
12 | Nakashima K,Tran L S,Van Nguyen D,et al.Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J].The Plant Journal,2007,51(4):617-630. |
13 | Lu M,Ying S,Zhang D F,et al.A maize stress-responsive NAC transcription factor,ZmSNAC1,confers enhanced tolerance to dehydration in transgenic Arabidopsis[J].Plant Cell,2012,31(9):1701-1711. |
14 | Mao X G,Zhang H Y,Qian X Y,et al.TaNAC2,a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis[J].Journal of Experimental Botany,2012,63(8):2933-2946. |
15 | Huang Q J,Wang Y,Li B,et al.TaNAC29,a NAC transcription factor from wheat,enhances salt and drought tolerance in transgenic Arabidopsis[J].BMC Plant Biology,2015,15:268. |
16 | Guan H R,Liu X,Niu F,et al.OoNAC72,a NAC-type Oxytropis ochrocephala transcription factor,conferring enhanced drought and salt stress tolerance in Arabidopsis[J].Frontiers in Plant Science,2019,10:890. |
17 | Yu X W,Liu Y M,Wang S,et al.CarNAC4,a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis[J].Plant Cell Reports,2016,35(3):613-627. |
18 | Hou X M,Zhang H F,Liu S Y,et al.The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers[J].Plant Science,2020,291:110346. |
19 | Mao X G,Chen S S,Li A,et al.Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis[J].PLoS One,2014,9(1):e84359. |
20 | Huang L,Hong Y B,Zhang H J,et al.Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J].BMC Plant Biology,2016,16:203. |
21 | An J P,Li R,Qu F J,et al.An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway[J].Journal of Plant Physiology,2018,221:74-80. |
22 | Zhong R Q,Lee C,Ye Z H.Functional characterization of poplar wood-associated NAC domain transcription factors[J].Plant Physiology,2010,152(2):1044-1055. |
23 | Lescot M,Déhais P,Thijs G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325-327. |
24 | Sambrook J,Russell D W.Molecular cloning:a laboratory manual[M].Cold Spring Harbor:Cold Spring Harbor Laboratory Press,2001:898-915. |
25 | 高永峰,杨丰铭,李琴中,等.番茄SlWRKY31基因启动子的克隆与逆境应答模式分析[J].西北植物学报,2018,38(12):2155-2164. |
Gao Y F,Yang F M,Li Q Z,et al.Cloning and analysis of stress response pattern of SlWRKY31 gene promoter from tomato[J].Acta Botanica Boreali-Occidentalia Sinica,2008,38(12):2155-2164. | |
26 | 郭晋艳,郑晓瑜,邹翠霞,等.植物非生物胁迫诱导启动子顺式元件及转录因子研究进展[J].生物技术通报,2011,(4):16-20,30. |
Guo J Y,Zheng X Y,Zou C X,et al.Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors[J].Biotechnology Bulletin,2011,(4):16-20,30. | |
27 | 聂丽娜,夏兰琴,徐兆师,等.植物基因启动子的克隆及其功能研究进展[J].植物遗传资源学报,2008,9(3):385-391. |
Nie L N,Xia L Q,Xu Z S,et al.Progress on cloning and functional study of plant gene promoters[J].Journal of Plant Genetic Resources,2008,9(3):385-391. | |
28 | Baloglu M C,Oz M T,Oktem H A,et al.Expression analysis of TaNAC69-1 and TtNAMB-2,wheat NAC family transcription factor genes under abiotic stress conditions in durum wheat(Triticum turgidum)[J].Plant Molecular Biology Reporter,2012,30(5):1246-1252. |
29 | Tak H,Negi S,Ganapathi T R.Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance[J].Protoplasma,2017,254(2):803-816. |
30 | Su L Y,Fang L C,Zhu Z F,et al.The transcription factor VaNAC17 from grapevine(Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis[J].Plant Cell Reports,2020,39(5):621-634. |
[1] | Xinyu NI, Junying HE, Mengjiao YAN, Chao DU. Application Progress of RNA-Seq Technology in Rare and Endangered Plants [J]. Bulletin of Botanical Research, 2023, 43(4): 481-492. |
[2] | Lian-Bin HAN, Qing GUO, Kai ZHAO, Ting-Bo JIANG, Bo-Ru ZHOU, Li LI. Cloning and Expression Analysis of HD-Zip Transcription Factor PsnHB63 in Populus simonii × P. nigra [J]. Bulletin of Botanical Research, 2021, 41(6): 1006-1014. |
[3] | DONG Shi-Wei, YANG Yu-Ning, WANG Nai-Rui, ZHANG Han-Guo, LI Shu-Juan. Gene Cloning and Stress Response Analysis of Natural Disorder Protein in Populus trichocarpa [J]. Bulletin of Botanical Research, 2020, 40(4): 575-582. |
[4] | LI Shuang, XIONG Ying, RALF M;ller-Xing, XING Qian. Distinct Expression Patterns of WRKY6 and PR1 in Arabidopsis Stress Memory Assays [J]. Bulletin of Botanical Research, 2019, 39(5): 752-759. |
[5] | WANG Meng, ZHNG Dong, LU Yan-Xi, XIAO Hua-Xing, ZHENG Fu-Cong, ZHANG Yu. Multiple Roles of Berberine Bridge Enzyme Gene HbBBE1 in Response to Stress in Hevea brasiliensis Muell. Arg. [J]. Bulletin of Botanical Research, 2018, 38(5): 704-713. |
[6] | ZHANG Yu, ZHANG Yue, ZHANG Chun-Rui, WANG Yan-Min, WANG Yu-Cheng, WANG Chao. Cloning and Expression Analysis of S-Adenosine Methionine Decarboxylase(ThSAMDC) Gene from Tamarix ramosissima [J]. Bulletin of Botanical Research, 2018, 38(1): 132-140. |
[7] | JIA Yuan-Yuan, ZHANG Chun-Rui, WANG Yu-Cheng, YANG Chuan-Ping, WANG Chao. Cloning and Expression Analysis of a Plasma Membrane Na+/H+ Antiporter Gene in Tamarix hispida [J]. Bulletin of Botanical Research, 2016, 36(3): 380-387. |
[8] | SONG Xin;DONG Jing-Xiang;LI Kai-Long;LI Hong-Jiao;LI Hui-Yu. Cloning and Identification of a Novel thioredoxin h Gene from Tamarix hisipida [J]. Bulletin of Botanical Research, 2015, 35(3): 340-346. |
[9] | HE Zhuan-Zhuan;GU Li-Li;LI Xiu-Ming;LAN Hai-Yan*. Expression Analysis and Stress Response Detection of the Phosphoinositide 5-phosphatase gene (CaP5P) in Chenopodium album [J]. Bulletin of Botanical Research, 2013, 33(6): 731-737. |
[10] | LI Jing, LI Jie, GUAN Ying-Zhi, ZHU Yan-Ming. Cloning of inducible promoter rd29A and the construction of plant express vector [J]. Bulletin of Botanical Research, 2004, 24(1): 111-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||