植物研究 ›› 2026, Vol. 46 ›› Issue (1): 67-82.doi: 10.7525/j.issn.1673-5102.2026.01.006
李政1, 陈凤欣1, 刘雨奇1, 李明明1, 尹嘉璨2, 刘超1, 夏新莉1(
)
收稿日期:2025-09-15
出版日期:2026-01-20
发布日期:2026-01-20
通讯作者:
夏新莉
E-mail:xiaxl@bjfu.edu.cn
作者简介:李政(1995—),男,博士研究生,主要从事木本植物逆境生物学研究。
基金资助:
Zheng LI1, Fengxin CHEN1, Yuqi LIU1, Mingming LI1, Jiacan YIN2, Chao LIU1, Xinli XIA1(
)
Received:2025-09-15
Online:2026-01-20
Published:2026-01-20
Contact:
Xinli XIA
E-mail:xiaxl@bjfu.edu.cn
摘要:
该研究针对全球干旱加剧导致杨树生长受抑及死亡的问题,以毛果杨(Populus trichocarpa)R2R3-MYB转录因子PtrMYB002为对象,通过基因克隆、表达载体构建、拟南芥(Arabidopsis thaliana)遗传转化和杨树(Populus L.)瞬时转化等手段,结合生物信息学、亚细胞定位、表型观察、生理指标测定及基因表达分析等方法,探究其在植物生长与抗旱性调控中的功能。结果表明:PtrMYB002定位于细胞核,其表达受干旱与ABA处理的显著诱导;过表达PtrMYB002基因显著负影响拟南芥的子叶面积、下胚轴长度、根长、莲座直径、地上部分鲜质量及花薹高度,但提高其抗旱性,表现为干旱条件下转基因株系的净CO?同化速率、电子传递速率(ETR)、实际光化学效率(Y(Ⅱ))、光化学淬灭系数(qP)和非光化学淬灭系数(NPQ)均显著高于野生型(WT),而气孔导度、蒸腾速率和相对电导率则显著低于WT,同时转基因株系中抗旱相关基因AtRD29A与AtDREB2的相对表达量显著上调。此外,瞬时转化PtrMYB002基因的‘84K’杨(P. alba×P. glandulosa ‘84K’)中PagRD29A与PagDREB2B基因相对表达量显著高于对照组,表明其调控机制在杨树中可能具有一定的保守性。综上,过表达PtrMYB002基因抑制拟南芥生长,同时增强其抗旱性,体现了其参与植物“生长与防御权衡”策略,该研究结果为杨树抗旱分子育种提供了新的基因资源与理论依据。
中图分类号:
李政, 陈凤欣, 刘雨奇, 李明明, 尹嘉璨, 刘超, 夏新莉. 过表达PtrMYB002基因抑制拟南芥生长并提高其抗旱性[J]. 植物研究, 2026, 46(1): 67-82.
Zheng LI, Fengxin CHEN, Yuqi LIU, Mingming LI, Jiacan YIN, Chao LIU, Xinli XIA. Overexpression of the PtrMYB002 gene Inhibits Growth of Arabidopsis thaliana and Enhances Its Drought Resistance[J]. Bulletin of Botanical Research, 2026, 46(1): 67-82.
表1
实时荧光定量PCR特异性引物序列
引物名称 Primer name | 上游引物序列(5′→3′) Forward primer sequence(5′→3′) | 引物名称 Primer name | 下游引物序列(5′→3′) Reverse primer sequence(5′→3′) |
|---|---|---|---|
| AtRD29A-F | CGGGATTTGACGGAGAACCA | AtRD29A-R | GGTCTCTTCCCAGCTCAGTC |
| AtDREB2-F | CGAGCAGCCGAAGAAAAGGA | AtDREB2-R | GCAGGAACTTTGCGTTTCGG |
| PagRD29A-F | GCCACAAATGTCATGGCCTC | PagRD29A-R | TCGCAGCATTTTGTCCTTGTC |
| PagDREB2B-F | GTTCTGCGCTTGGGTTTAGC | PagDREB2B-R | CTTTCTTCGACCCCTTGCCT |
| PtrMYB002-F | CGTTAGCAACCTCCATGAAAGC | PtrMYB002-R | TCACCACTGTTAAGGACTCCAAC |
| AtActin2-F | AGTGGTCGTACAACCGGTATTGT | AtActin2-R | GATGGCATGAGGAAGAGAGAAAC |
| PagUBQ-F | AGACCTACACCAAGCCCAAGAAGAT | PagUBQ-R | CCAGCACCGCACTCAGCATTAG |
图2
PtrMYB002基因启动子区域顺式作用调控元件及表达模式分析A.PtrMYB002基因启动子区域(ATG上游2 000 bp)的部分顺式作用调控元件(红色字体为MBS元件:参与干旱诱导性的MYB结合位点;蓝色字体为ABRE元件:参与脱落酸响应的顺式作用元件);B.网站上所显示的PtrMYB002基因在干旱、虫害和机械损伤时相对于对照组基因表达水平的变化(网址为https://plantgenie.org/);C.PtrMYB002基因在毛果杨茎、根和叶中的相对表达水平(n=3);D.不同干旱处理时间下毛果杨叶片PtrMYB002基因相对表达水平(n=3);E. 50 μmol·L-1 ABA喷施处理毛果杨叶片后不同时间点PtrMYB002基因相对表达量(n=3)。图2C~2E中方差分析的结果使用Duncan法进行多重比较。图2C~2E中柱子上方的小写字母表示组间差异比较结果(P<0.05),下同。
图7
干旱处理前后不同基因型拟南芥生理指标比较分析A.干旱处理前后WT、OE-1和OE-2拟南芥表型;B~H.干旱处理前后WT、OE-1和OE-2拟南芥叶片光合参数(B.净CO2同化速率;C.气孔导度;D.蒸腾速率)与荧光参数(E.电子传递速率(ETR);F.实际光化学效率(Y(Ⅱ));G.光化学淬灭系数(qP);H.非光化学淬灭系数(NPQ))的比较分析(n=3);I~J.干旱处理前后WT、OE-1和OE-2拟南芥叶片叶绿素含量(I.叶绿素a质量分数;J.叶绿素b质量分数)的比较分析(n=3);K.干旱处理前后WT、OE-1和OE-2拟南芥叶片相对电导率的比较分析(n=3)。所有柱状图中方差分析的结果使用Tukey法进行多重比较。
| [1] | GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I.The physiology of plant responses to drought[J].Science,2020,368(6488):266-269. |
| [2] | BARBETA A, MEJÍA-CHANG M, OGAYA R,et al.The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a mediterranean forest[J].Global Change Biology,2015,21(3):1213-1225. |
| [3] | YU D D, JANZ D, ZIENKIEWICZ K,et al.Wood formation under severe drought invokes adjustment of the hormonal and transcriptional landscape in poplar[J].International Journal of Molecular Sciences,2021,22(18):9899. |
| [4] | SUN S J, HE C X, QIU L F,et al.Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in northern China[J].Agricultural and Forest Meteorology,2018,252:39-48. |
| [5] | WILKINS O, NAHAL H, FOONG J,et al.Expansion and diversification of the Populus R2R3-MYB family of transcription factors[J].Plant Physiology,2009,149(2):981-993. |
| [6] | DUBOS C, STRACKE R, GROTEWOLD E,et al.MYB transcription factors in Arabidopsis [J].Trends in Plant Science,2010,15(10):573-581. |
| [7] | CHEN Z, LU X Y, LI Q Z,et al.Systematic analysis of MYB gene family in Acer rubrum and functional characterization of ArMYB89 in regulating anthocyanin biosynthesis[J].Journal of Experimental Botany,2021,72(18):6319-6335. |
| [8] | 王浩田,蒋景龙,王倩,等.R2R3 -MYB转录因子响应植物抗逆机制研究进展[J/OL].分子植物育种,(2023-08-10)[2025-09-15].. |
| WANG H T, JIANG J L, WANG Q,et al.Research progress on the mechanism of R 2R3-MYB transcription factors in response to plant stress tolerance[J/OL].Molecular Plant Breeding,(2023-08-10)[2025-09-15].. | |
| [9] | ZHAO K, CHENG Z H, GUO Q,et al.Characterization of the poplar R2R3-MYB gene family and over-expression of PsnMYB108 confers salt tolerance in transgenic tobacco[J].Frontiers in Plant Science,2020,11:571881. |
| [10] | 赵凯.84K杨转录因子PagMYB73调控耐盐胁迫的分子机理研究[D].哈尔滨:东北林业大学,2021. |
| ZHAO K.Molecular mechanism of transcription factor PagMYB73 in regulation of salt stress tolerance in Populus alba × P .glandulosa[D].Harbin:Northeast Forestry University,2021. | |
| [11] | SONG Q, KONG L F, YANG X R,et al.PtoMYB142,a poplar R2R3-MYB transcription factor,contributes to drought tolerance by regulating wax biosynthesis[J].Tree Physiology,2022,42(10):2133-2147. |
| [12] | FANG Q, WANG X Q, WANG H Y,et al.The poplar R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to improve drought tolerance in plants[J].Tree physiology,2020,40(1):46-59. |
| [13] | YAN M L, LI X X, JI X Y,et al.An R2R3-MYB transcription factor PdbMYB6 enhances drought tolerance by mediating reactive oxygen species scavenging,osmotic balance,and stomatal opening[J].Plant Physiology and Biochemistry,2025,220:109536. |
| [14] | YAN C X, DONG K Y, ZHANG Y N,et al. Populus euphratica PeRAX2 interacts with the PeANN1 promoter to regulate gene expression and cadmium tolerance[J].Plant Physiology and Biochemistry,2025,227:110152. |
| [15] | WANG B, XIONG C W, PENG Z J,et al.Genome-wide analysis of R2R3-MYB transcription factors in poplar and functional validation of PagMYB147 in defense against Melampsora magnusiana [J].Planta,2024,260(2):47. |
| [16] | WANG L J, RAN L Y, HOU Y S,et al.The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar[J].New Phytologist,2017,215(1):351-367. |
| [17] | ZHANG X L, WANG H R, CHEN Y,et al.The over-expression of two R2R3-MYB genes,PdMYB2R089 and PdMYB2R151,increases the drought-resistant capacity of transgenic Arabidopsis [J].International Journal of Molecular Sciences,2023,24(17):13466. |
| [18] | HU J, ZOU S Q, HUANG J J,et al.PagMYB151 facilitates proline accumulation to enhance salt tolerance of poplar[J].BMC Genomics,2023,24(1):345. |
| [19] | 宋琴.杨树转录因子PtoMYB142调控干旱胁迫的分子机制研究[D].重庆:西南大学,2022. |
| SONG Q.The molecular mechanism of transcription factor PtoMYB142 involved in drought resistance in poplar[D].Chongqing:Southwest University,2022. | |
| [20] | FANG Q, JIANG T Z, XU L X,et al.A salt-stress-regulator from the poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis [J].Plant Physiology and Biochemistry,2017,114:100-110. |
| [21] | YU Y, LIU H Z, ZHANG N,et al.The BpMYB4 transcription factor from Betula platyphylla contributes toward abiotic stress resistance and secondary cell wall biosynthesis[J].Frontiers in Plant Science,2021,11:606062. |
| [22] | YANG X Y, LI J, GUO T,et al.Comprehensive analysis of the R2R3-MYB transcription factor gene family in Populus trichocarpa [J].Industrial Crops and Products,2021,168:113614. |
| [23] | ZHONG R Q, MCCARTHY R L, HAGHIGHAT M,et al.The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation[J].PLoS One,2013,8(7):e69219. |
| [24] | ZHANG X R, HENRIQUES R, LIN S S,et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J].Nature Protocols,2006,1(2):641-646. |
| [25] | CUI X F, FAN B F, SCHOLZ J,et al.Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection,plant growth,and development[J].The Plant Cell,2007,19(4):1388-1402. |
| [26] | ZHOU Y Y, ZHANG Y, WANG X W,et al.Root-specific NF-Y family transcription factor,PdNF-YB21,positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus [J].New Phytologist,2020,227(2):407-426. |
| [27] | GUO H Y, WANG Y C, WANG L Q,et al.Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla [J].Plant Biotechnology Journal,2017,15(1):107-121. |
| [28] | JING S R, WANG Y X, SONG Y Y,et al.Dual regulation of cuticle and cell wall biosynthesis by BnaC9.MYB46 confers drought tolerance in Brassica napus [J].Plant Biotechnology Journal,2025,23(11):5335-5350. |
| [29] | 刘永惠,沈一,沈悦,等.花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J].作物学报,2024,50(9):2157-2166. |
| LIU Y H, SHEN Y, SHEN Y,et al.Cloning and functional analysis of drought-inducible promoter AhMYB44-11-Pro in peanut (Arachis hypogaea L.)[J].Acta Agronomica Sinica,2024,50(9):2157-2166. | |
| [30] | XU Z W, WANG M P, GUO Z T,et al.Identification of a 119-bp promoter of the maize sulfite oxidase gene (ZmSO) that confers high-level gene expression and ABA or drought inducibility in transgenic plants[J].International Journal of Molecular Sciences,2019,20(13):3326. |
| [31] | ZHU Z G, QUAN R, CHEN G X,et al.An R2R3-MYB transcription factor VyMYB24,isolated from wild grape Vitis yanshanesis J.X.Chen.,regulates the plant development and confers the tolerance to drought[J].Frontiers in Plant Science,2022,13:966641. |
| [32] | YANG R, WANG S S, ZOU H L,et al.R2R3-MYB transcription factor SmMYB52 positively regulates biosynthesis of salvianolic acid B and inhibits root growth in Salvia miltiorrhiza [J].International Journal of Molecular Sciences,2021,22(17):9538. |
| [33] | 戚义东,秦华,高雅迪,等.脱落酸拮抗赤霉素抑制水稻地上部生长的研究[J].生物技术进展,2019,9(5):483-489. |
| QI Y D, QIN H, GAO Y D,et al.Study on antagonizing regulation of shoot growth by abscisic acid and gibberellic acid in rice[J].Current Biotechnology,2019,9(5):483-489. | |
| [34] | DUBOIS M.Cycling with brakes:ABA-INSENSITIVE4 controls cell cycle arrest in the root meristem[J].Plant Physiology,2023,191(1):9-11. |
| [35] | LUO X F, XU J H, ZHENG C,et al.Abscisic acid inhibits primary root growth by impairing ABI4-mediated cell cycle and auxin biosynthesis[J].Plant Physiology,2023,191(1):265-279. |
| [36] | MA Z M, JIN Y M, WU T,et al.OsDREB2B,an AP2/ERF transcription factor,negatively regulates plant height by conferring GA metabolism in rice[J].Frontiers in Plant Science,2022,13:1007811. |
| [37] | DUAN Y J, SHANG X G, WU R X,et al.The transcription factor GhMYB4 represses lipid transfer and sucrose transporter genes and inhibits fiber cell elongation in cotton[J].Plant Physiology,2025,197(1):kiae637. |
| [38] | XU F, LI G M, HE S Y,et al.Sphingolipid inhibitor response gene GhMYB86 controls fiber elongation by regulating microtubule arrangement[J].Journal of Integrative Plant Biology,2024,66(9):1898-1914. |
| [39] | 全冉.中国野生燕山葡萄VyMYB24基因抗旱功能研究[D].新乡:河南科技学院,2022. |
| QUAN R.Study on drought resistance function of VyMYB24 gene in Vitis yeshanensis [D].Xinxiang:Henan Institute of Science and Technology,2022. | |
| [40] | 刘佳,王少鹏,史昆,等.紫花苜蓿MsMYB58基因克隆及抗旱功能鉴定[J].草地学报,2023,31(12):3608-3616. |
| LIU J, WANG S P, SHI K,et al.Cloning and function identification of MsMYB58 in alfalfa under drought stress[J].Acta Agrestia Sinica,2023,31(12):3608-3616. | |
| [41] | 刘瑞.杨树PtoMYB170转录因子在次生壁合成调控及抗旱中的功能研究[D].重庆:西南大学,2016. |
| LIU R.PtoMYB170 positively regulates secondary cell wall formation in transgenic poplar and confers drought tolerance in transgenic Arabidopsis [D].Chongqing:Southwest University,2016. | |
| [42] | CHEN K Q, SONG M R, GUO Y N,et al.MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals[J].Plant Biotechnology Journal,2019,17(12):2341-2355. |
| [43] | 刘坤,李国婧,杨杞.参与植物非生物逆境响应的DREB/CBF转录因子研究进展[J].生物技术通报,2022,38(5):201-214. |
| LIU K, LI G J, YANG Q.Research progress in DREB/CBF transcription factor involved in responses in plant to abiotic stress[J].Biotechnology Bulletin,2022,38(5):201-214. | |
| [44] | ZHANG T T, LIN Y J, LIU H F,et al.The AP2/ERF transcription factor MdDREB2A regulates nitrogen utilisation and sucrose transport under drought stress[J].Plant,Cell & Environment,2024,47(5):1668-1684. |
| [45] | LIU W S, SIKORA E, PARK S W.Plant growth-promoting rhizobacterium,Paenibacillus polymyxa CR1,upregulates dehydration-responsive genes,RD29A and RD29B,during priming drought tolerance in Arabidopsis [J].Plant Physiology and Biochemistry,2020,156:146-154. |
| [46] | KARASOV T L, CHAE E, HERMAN J J,et al.Mechanisms to mitigate the trade-off between growth and defense[J].The Plant Cell,2017,29(4):666-680. |
| [47] | 刘玉玲,王梦瑶,孙琦,等.启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J].生物技术通报,2023,39(9):168-175. |
| LIU Y L, WANG M Y, SUN Q,et al.Effect of RD29A promoter on the stress resistance of transgenic tobacco with SikCDPK1 gene from Saussurea involucrata [J].Biotechnology Bulletin,2023,39(9):168-175. |
| [1] | 赵雪怡, 杨明雨, 李湘, 司林菡, 王南, 刘伟灿, 董园园, 李晓薇, 王法微. 植物中肌醇磷酸激酶研究进展[J]. 植物研究, 2025, 45(6): 840-850. |
| [2] | 孙子腾, 王新宇, 侯丽丽, 刘月影, 郑志民. 白桦BpGRFs基因鉴定与功能初步分析[J]. 植物研究, 2025, 45(2): 191-201. |
| [3] | 孟令桐, 苏丽伟, 李祥欣, 熊天圣, 常攀鹏, 刘孟卓, 周晨光. 基于CRISPR-dCas9转录激活系统的毛果杨ANT转录因子功能分析[J]. 植物研究, 2024, 44(3): 431-440. |
| [4] | 郝雪峰, 贾晓宇, 曹海艳, 亢春霞, 裴雁曦. 一株拟南芥宽叶形突变体atscamp的分离鉴定[J]. 植物研究, 2024, 44(2): 232-238. |
| [5] | 刘玮, 朱自强. 植物根部热形态建成的研究进展[J]. 植物研究, 2024, 44(1): 1-7. |
| [6] | 江转转, 龚莉, 宋亚玲. 拟南芥叶绿体分裂蛋白PARC6影响子叶与真叶的生长[J]. 植物研究, 2023, 43(5): 700-710. |
| [7] | 郑晟, 高海霞, 苏敏, 卢尚欢, 张腾国, 武国凡. 外源蔗糖影响AtKEA1和AtKEA2调节拟南芥幼苗根的生长[J]. 植物研究, 2023, 43(4): 562-571. |
| [8] | 裘喻平, 王益川, 郭红卫. 植物根毛发育调控机制的研究进展[J]. 植物研究, 2023, 43(3): 321-332. |
| [9] | 申晨静, 武文博, 耿露冉, 王福龙, 赵鹏舟, 宋金辉, 詹亚光, 尹静. 水杨酸、纳米氧化锌和促生真菌YZ13-1在水曲柳抵御干旱胁迫中的调控作用[J]. 植物研究, 2023, 43(3): 388-395. |
| [10] | 蔡圆圆, 夏季奔奔, 应文涵, 王洁瑶, 谢涛, 邢孔丫, 冯宣军, 华学军. 拟南芥线粒体蛋白突变体ssr1-2表型的详细鉴定与分析[J]. 植物研究, 2023, 43(3): 421-431. |
| [11] | 黄安瀛, 夏德安, 张洋, 那冬晨, 燕青, 魏志刚. PtrWRKY51基因的克隆及抗旱表达特性分析[J]. 植物研究, 2022, 42(6): 1005-1013. |
| [12] | 王雪莹, 王瑞琪, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨CNGC家族全基因组鉴定及胁迫响应分析[J]. 植物研究, 2022, 42(4): 613-625. |
| [13] | 程赫, 田双慧, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨nsLTP基因家族全基因组水平鉴定及其表达特性分析[J]. 植物研究, 2022, 42(3): 412-423. |
| [14] | 王梦姣, 曹钰雪, 徐永盛, 丁风鹅, 苏乔. 过表达海洋微生物宏基因组MbCSP提高转基因拟南芥的抗旱和耐寒性[J]. 植物研究, 2022, 42(2): 243-251. |
| [15] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||