植物研究 ›› 2024, Vol. 44 ›› Issue (1): 1-7.doi: 10.7525/j.issn.1673-5102.2024.01.001
• 研究综述 • 下一篇
收稿日期:
2023-10-07
出版日期:
2024-01-20
发布日期:
2023-12-27
通讯作者:
朱自强
E-mail:zqzhu@njnu.edu.cn
作者简介:
刘玮(1997—),女,博士研究生,主要从事植物光温信号转导研究。
基金资助:
Received:
2023-10-07
Online:
2024-01-20
Published:
2023-12-27
Contact:
Ziqiang ZHU
E-mail:zqzhu@njnu.edu.cn
摘要:
植物发育具有高度可塑性。当环境温度升高时,植物的茎和叶柄会伸长,从而促进植物叶片表面降温,这一过程被称为热形态建成。高温也会引起植物根的伸长,有学者称之为根部热形态建成。目前关于植物地上部分的热形态建成调控已有较多研究,植物根部热形态建成的调控机制研究和相关综述论文尚不多。本文综述了近年来在植物根部热形态建成领域的相关研究进展,并对今后的研究方向进行了展望。
中图分类号:
刘玮, 朱自强. 植物根部热形态建成的研究进展[J]. 植物研究, 2024, 44(1): 1-7.
Wei LIU, Ziqiang ZHU. Recent Advances on Plant Root Thermomorphogenesis[J]. Bulletin of Botanical Research, 2024, 44(1): 1-7.
1 | VU L D, XU X Y, GEVAERT K,et al.Developmental plasticity at high temperature[J].Plant Physiology,2019,181(2):399-411. |
2 | QUINT M, DELKER C, FRANKLIN K A,et al.Molecular and genetic control of plant thermomorphogenesis[J].Nature Plants,2016,2:15190. |
3 | CRAWFORD A J, MCLACHLAN D H, HETHERINGTON A M,et al.High temperature exposure increases plant cooling capacity[J].Current Biology,2012,22(10):R396-R397. |
4 | KOEVOETS I T, VENEMA J H, ELZENGA J T M,et al.Roots withstanding their environment:exploiting root system architecture responses to abiotic stress to improve crop tolerance[J].Frontiers in Plant Science,2016,7:1335. |
5 | ZHAO C, LIU B, PIAO S L,et al.Temperature increase reduces global yields of major crops in four independent estimates[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(35):9326-9331. |
6 | 赵恩博.1981—2016年蒙古国气温变化特征研究[J].气候变化研究快报,2022,11(5):820-829. |
ZHAO E B.The study on the characteristics of temperature change in Mongolia from 1981 to 2016[J].Climate Change Research Letters,2022,11(5):820-829. | |
7 | YEH C H, KAPLINSKY N J, HU C,et al.Some like it hot,some like it warm:phenotyping to explore thermotolerance diversity[J].Plant Science,2012,195:10-23. |
8 | LING Y, SERRANO N, GAO G,et al.Thermopriming triggers splicing memory in Arabidopsis [J].Journal of Experimental Botany,2018,69(10):2659-2675. |
9 | SEDAGHATMEHR M, MUELLER-ROEBER B, BALAZADEH S.The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis [J].Nature Communications,2016,7:12439. |
10 | MARTINS S, MONTIEL-JORDA A, CAYREL A,et al.Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature[J].Nature Communications,2017,8(1):309. |
11 | GRAY W M, ÖSTIN A, SANDBERG G,et al.High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(12):7197-7202. |
12 | LIN J Y, XU Y, ZHU Z Q.Emerging plant thermosensors:from RNA to protein[J].Trends in Plant Science,2020,25(12):1187-1189. |
13 | JUNG J H, SEO P J,OH E,et al.Temperature perception by plants[J].Trends in Plant Science,2023,28(8):924-940. |
14 | JUNG J H, DOMIJAN M, KLOSE C,et al.Phytochromes function as thermosensors in Arabidopsis [J].Science,2016,354(6314):886-889. |
15 | LEGRIS M, KLOSE C, BURGIE E S,et al.Phytochrome B integrates light and temperature signals in Arabidopsis [J].Science,2016,354(6314):897-900. |
16 | CHUNG B Y W, BALCEROWICZ M, DI ANTONIO M,et al.An RNA thermoswitch regulates daytime growth in Arabidopsis [J].Nature Plants,2020,6(5):522-532. |
17 | NUSINOW D A, HELFER A, HAMILTON E E,et al.The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth[J].Nature,2011,475(7356):398-402. |
18 | SILVA C S, NAYAK A, LAI X L,et al.Molecular mechanisms of Evening Complex activity in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(12):6901-6909. |
19 | HERRERO E, KOLMOS E, BUJDOSO N,et al.EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock[J].The Plant Cell,2012,24(2):428-443. |
20 | JUNG J H, BARBOSA A D, HUTIN S,et al.A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis [J].Nature,2020,585(7824):256-260. |
21 | HALTENHOF T, KOTTE A, DE BORTOLI F,et al.A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression[J].Molecular Cell,2020,78(1):57-69.e4. |
22 | LIN J Y, SHI J J, ZHANG Z H,et al.Plant AFC2 kinase desensitizes thermomorphogenesis through modulation of alternative splicing[J].iScience,2022,25(4):104051. |
23 | FRANKLIN K A, LEE S H, PATEL D,et al.Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(50):20231-20235. |
24 | SUN J Q, QI L L, LI Y N,et al.PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth[J].PLoS Genetics,2012,8(3):e1002594. |
25 | BELLSTAEDT J, TRENNER J, LIPPMANN R,et al.A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls[J].Plant Physiology,2019,180(2):757-766. |
26 | HANZAWA T, SHIBASAKI K, NUMATA T,et al.Cellular auxin homeostasis under high temperature is regulated through a sorting NEXIN1-dependent endosomal trafficking pathway[J].The Plant Cell,2013,25(9):3424-3433. |
27 | WANG R H, ZHANG Y, KIEFFER M,et al.HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1[J].Nature Communications,2016,7(1):10269. |
28 | AI H Y, BELLSTAEDT J, BARTUSCH K S,et al.Auxin‐dependent regulation of cell division rates governs root thermomorphogenesis[J].The EMBO Journal,2023,42(11):e111926. |
29 | QIU Y J, PASORECK E K, YOO C Y,et al.RCB initiates Arabidopsis thermomorphogenesis by stabilizing the thermoregulator PIF4 in the daytime[J].Nature Communications,2021,12(1):2042. |
30 | LEE S, WANG W L,HUQ E.Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis [J].Nature Communications,2021,12(1):3656. |
31 | CHEN X B, YAO Q F, GAO X H,et al.Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J].Current Biology,2016,26(5):640-646. |
32 | VAN GELDEREN K, KANG C, PAALMAN R,et al.Far-red light detection in the shoot regulates lateral root development through the HY5 transcription factor[J].The Plant Cell,2018,30(1):101-116. |
33 | GAILLOCHET C, BURKO Y, PLATRE M P,et al.HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in Arabidopsis [J].Development,2020,147(24):dev192625. |
34 | BORNIEGO M B, COSTIGLIOLO-ROJAS C, CASAL J J.Shoot thermosensors do not fulfil the same function in the root[J].The New Phytologist,2022,236(1):9-14. |
35 | FIORUCCI A S, GALVÃO V C, INCE Y Ç,et al.PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings[J].The New Phytologist,2020,226(1):50-58. |
36 | DE LIMA C F F, KLEINE-VEHN J, DE SMET I,et al.Getting to the root of belowground high temperature responses in plants[J].Journal of Experimental Botany,2021,72(21):7404-7413. |
37 | FERARU E, FERARU M I, BARBEZ E,et al.PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(9):3893-3898. |
38 | IBAÑEZ C, POESCHL Y, PETERSON T,et al.Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana [J].BMC Plant Biology,2017,17(1):114. |
39 | YANG X L, DONG G, PALANIAPPAN K,et al.Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana [J].Plant,Cell & Environment,2017,40(2):264-276. |
40 | KEPINSKI S, LEYSER O.The Arabidopsis F-box protein TIR1 is an auxin receptor[J].Nature,2005,435(7041):446-451. |
41 | BARBEZ E, KUBEŠ M, ROLČÍK J,et al.A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants[J].Nature,2012,485(7396):119-122. |
42 | BÉZIAT C, BARBEZ E, FERARU M I,et al.Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition[J].Nature Plants,2017,3:17105. |
43 | GRIF V G, VALOVICH E M.Effect of low positive temperatures on cell growth and division during seed development[J].Tsitologiia,1973,15(11):1362-1369. |
44 | MURÍN A.The effect of temperature on the mitotic cycle and its time parameters in root tips of Vicia faba [J].Naturwissenschaften,1966,53(12):312-313. |
45 | SILK W K, LORD E M, ECKARD K J.Growth patterns inferred from anatomical records:empirical tests using longisections of roots of Zea mays L [J].Plant Physiology,1989,90(2):708-713. |
46 | GONZÁLEZ-GARCÍA M P, VILARRASA-BLASI J, ZHIPONOVA M,et al.Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots[J].Development,2011,138(5):849-859. |
47 | HACHAM Y, HOLLAND N, BUTTERFIELD C,et al.Brassinosteroid perception in the epidermis controls root meristem size[J].Development,2011,138(5):839-848. |
48 | FRIDMAN Y, ELKOUBY L, HOLLAND N,et al.Root growth is modulated by differential hormonal sensitivity in neighboring cells[J].Genes & Development,2014,28(8):912-920. |
49 | SUN L, FERARU E, FERARU M I,et al.PIN-LIKES coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana [J].Current Biology,2020,30(9):1579-1588.e6. |
50 | RŮŽIČKA K, LJUNG K, VANNESTE S,et al.Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution[J].The Plant Cell,2007,19(7):2197-2212. |
51 | ZEMLYANSKAYA E V, OMELYANCHUK N A, UBOGOEVA E V,et al.Deciphering auxin-ethylene crosstalk at a systems level[J].International Journal of Molecular Sciences,2018,19(12):4060. |
52 | STREET I H, AMAN S, ZUBO Y,et al.Ethylene inhibits cell proliferation of the Arabidopsis root meristem[J].Plant Physiology,2015,169(1):338-350. |
53 | FEI Q H, WEI S D, ZHOU Z Y,et al.Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis [J].Plant Cell Reports,2017,36(9):1507-1518. |
54 | BODEN S A, KAVANOVÁ M, FINNEGAN E J,et al.Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes[J].Genome Biology,2013,14(6):R65. |
[1] | 江转转, 龚莉, 宋亚玲. 拟南芥叶绿体分裂蛋白PARC6影响子叶与真叶的生长[J]. 植物研究, 2023, 43(5): 700-710. |
[2] | 郑晟, 高海霞, 苏敏, 卢尚欢, 张腾国, 武国凡. 外源蔗糖影响AtKEA1和AtKEA2调节拟南芥幼苗根的生长[J]. 植物研究, 2023, 43(4): 562-571. |
[3] | 裘喻平, 王益川, 郭红卫. 植物根毛发育调控机制的研究进展[J]. 植物研究, 2023, 43(3): 321-332. |
[4] | 蔡圆圆, 夏季奔奔, 应文涵, 王洁瑶, 谢涛, 邢孔丫, 冯宣军, 华学军. 拟南芥线粒体蛋白突变体ssr1-2表型的详细鉴定与分析[J]. 植物研究, 2023, 43(3): 421-431. |
[5] | 陈坤, 方功桂, 穆怀志, 姜静. 白桦BpPIN3基因启动子序列及应答特性分析[J]. 植物研究, 2022, 42(4): 592-601. |
[6] | 王梦姣, 曹钰雪, 徐永盛, 丁风鹅, 苏乔. 过表达海洋微生物宏基因组MbCSP提高转基因拟南芥的抗旱和耐寒性[J]. 植物研究, 2022, 42(2): 243-251. |
[7] | 武国凡, 成宏斌, 吴玉俊, 沈娟, 吴旺泽. CRISPR/Cas9介导靶向敲除拟南芥BRI1突变体的鉴定[J]. 植物研究, 2021, 41(3): 362-371. |
[8] | 朱畇昊, 张梦佳, 董诚明. 外源MeJA对高温胁迫下半夏抗氧化系统和胁迫基因的影响[J]. 植物研究, 2021, 41(1): 67-73. |
[9] | 刘金玉, 高月皓, 黄金硕, 张芹. 外源水杨酸对高温胁迫下金莲花幼苗生理及电阻抗参数的影响[J]. 植物研究, 2020, 40(4): 543-551. |
[10] | 张雨晴, 刘野, 曲春浦, 刘关君, 杨天天, 杨成君. 转基因PnDof30拟南芥非生物胁迫下的抗性分析[J]. 植物研究, 2020, 40(3): 407-415. |
[11] | 李子义, 贺子航, 卢惠君, 王玉成, 及晓宇. 拟南芥AtUNE12基因的耐盐功能初探[J]. 植物研究, 2020, 40(2): 257-265. |
[12] | 何好, 朱国庆, 陈诗雅, 徐畅, 金淑梅. 细叶百合LpPEX7基因克隆及盐胁迫下的表达特性分析[J]. 植物研究, 2020, 40(2): 274-283. |
[13] | 王爽, 程玉祥, 夏德安. 拟南芥根毛功能基因AtGDPD-Like3关键氨基酸位点鉴定[J]. 植物研究, 2020, 40(1): 79-84. |
[14] | 李芃, 郇兆蔚, 丁兰. Rabdosinate调节生长素极性运输蛋白PIN1、PIN3和PIN4抑制拟南芥幼苗根生长[J]. 植物研究, 2019, 39(6): 908-916. |
[15] | 李爽, 熊樱, RALF M;ller-Xing, 邢倩. 转录因子WRKY6和PR1在拟南芥胁迫记忆中的表达模式[J]. 植物研究, 2019, 39(5): 752-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||