植物研究 ›› 2025, Vol. 45 ›› Issue (2): 191-201.doi: 10.7525/j.issn.1673-5102.2025.02.005
• 研究论文 • 上一篇
收稿日期:
2024-12-11
出版日期:
2025-03-20
发布日期:
2025-04-04
通讯作者:
郑志民
E-mail:zmzheng@nefu.edu.cn
作者简介:
孙子腾(2000—),男,硕士研究生,主要从事林木遗传育种研究。
基金资助:
Ziteng SUN, Xinyu WANG, Lili HOU, Yueying LIU, Zhimin ZHENG()
Received:
2024-12-11
Online:
2025-03-20
Published:
2025-04-04
Contact:
Zhimin ZHENG
E-mail:zmzheng@nefu.edu.cn
摘要:
生长调节因子(GROWTH-REGULATING FACTOR,GRF)是一种植物中广泛存在的特异性转录因子,在植物的生长发育和胁迫响应过程中发挥着重要作用。该研究对白桦(Betula platyphylla)GRF基因家族进行生物信息学分析发现,白桦中包含9个GRF基因家族成员,均具有保守的WRC和QLQ结构域,启动子顺式作用元件预测分析发现,BpGRFs家族基因的启动子区域包含丰富的响应生长发育、激素代谢和胁迫反应等的相关元件。qRT-PCR结果表明,BpGRF4在白桦的各组织中均呈现高水平表达,进而通过农杆菌介导法获得了白桦过表达BpGRF4株系(OE-1、OE-2、OE-3),用以探究BpGRF4在白桦发育过程中的作用,过表达BpGRF4株系在株高、地径、节间长度、分枝长度均显著提升。另外,OE-3株系的皮层、韧皮部和髓心面积显著增大,叶片表皮细胞较野生型增大约51.6%。综上,过表达BpGRF4的白桦植株生长发育受到了积极调控作用,该结果为解析GRF基因家族在白桦生长发育过程中发挥的功能提供了一定理论依据。
中图分类号:
孙子腾, 王新宇, 侯丽丽, 刘月影, 郑志民. 白桦BpGRFs基因鉴定与功能初步分析[J]. 植物研究, 2025, 45(2): 191-201.
Ziteng SUN, Xinyu WANG, Lili HOU, Yueying LIU, Zhimin ZHENG. Identification and Preliminary Functional Analysis of the BpGRFs Gene in Betula Platyphylla[J]. Bulletin of Botanical Research, 2025, 45(2): 191-201.
表1
BpGRF 基因家族qRT-PCR引物
基因名称 Gene name | 引物序列(5′→3′) Primer sequences (5′→3′) |
---|---|
BpGRF1-F | AGATCATCTTCAGGGACCTTTGAAGAT |
BpGRF1-R | GAGGTTCTGATTTGGGGGAAGAG |
BpGRF2-F | GATGATGATGGTTATGCCACATCATGA |
BpGRF2-R | TCAGAGTCTTTGGCACCATTGCA |
BpGRF3-F | CTCAGTGGCAAGAGCTTGAACA |
BpGRF3-R | GCAAGTAGTTCCAGCCAATATGTGG |
BpGRF4-F | GTCTGGGCCTGCTGAAGATGA |
BpGRF4-R | ATCCTTGCTGAGAAAGGGAACCT |
BpGRF5-F | ACTCAGTGGCAAGAGCTTGAACA |
BpGRF5-R | CTGCCATATCCCATCTCAAAACATGT |
BpGRF6-F | AGAGGATGTCTGACGAGGAGGA |
BpGRF6-R | TCCTTGAAGCTCATGCGACTGAG |
BpGRF7-F | ATGTTGTTGCTGCTGCTTGTTCT |
BpGRF7-R | GCTTGTCTCTCAAGCTCTTTCCAC |
BpGRF8-F | ATGAACAGTGGTGGAGCTGGC |
BpGRF8-R | ATGAGAAATGGACTCAAAGCTTTTCTGAAT |
BpGRF9-F | ATGGACTTCCATCTGAAGCAATGGA |
BpGRF9-R | ATCCTGGGAAATCTGGTGGGTG |
BpTubulin-F | TCAACCGCCTTGTCTCTCAGG |
BpTubulin-R | TGGCTCGAATGCACTGTTGG |
表2
白桦 GRF 基因家族理化性质分析
基因名称 Gene name | 基因ID Gene ID | 染色体 Chromosome | 基因位置 Gene location | 氨基酸数目 Number of amino acids/aa | 相对分子质量 Molecular weight/Da | 等电点 Isoelectricpoint | 总平均亲水性 Total average hydrophilicity | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|
BpGRF1 | Chr01G01531 | 1 | 20095262~20098378 | 606 | 65 788.05 | 8.67 | -0.662 | 细胞核Nuclear |
BpGRF2 | Chr02G01459 | 2 | 17218445~17220195 | 462 | 50 533.66 | 7.54 | -0.610 | 细胞核Nuclear |
BpGRF3 | Chr03G01749 | 3 | 21418731~21420189 | 375 | 42 955.78 | 8.11 | -0.918 | 细胞核Nuclear |
BpGRF4 | Chr06G00029 | 6 | 331582~334410 | 600 | 64 353.25 | 6.52 | -0.582 | 细胞核Nuclear |
BpGRF5 | Chr06G01222 | 6 | 11256167~11257412 | 316 | 36 045.05 | 8.71 | -0.879 | 细胞核Nuclear |
BpGRF6 | Chr06G02041 | 6 | 23869844~23872981 | 503 | 54 207.00 | 9.57 | -0.608 | 细胞核Nuclear |
BpGRF7 | Chr08G00312 | 8 | 2742946~2745353 | 528 | 56 979.17 | 6.28 | -0.585 | 细胞核Nuclear |
BpGRF8 | Chr08G00421 | 8 | 3587787~3591990 | 327 | 35 993.60 | 7.75 | -0.783 | 细胞核Nuclear |
BpGRF9 | Chr14G02157 | 14 | 25355104~25357316 | 389 | 42 098.12 | 8.64 | -0.559 | 细胞核Nuclear |
1 | KIM J H.Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants[J].BMB Reports,2019,52(4):227-238. |
2 | LIEBSCH D, PALATNIK F J.MicroRNA miR396,GRF transcription factors and GIF co-regulators:a conserved plant growth regulatory module with potential for breeding and biotechnology[J].Current Opinion in Plant Biology,2020,53:31-42. |
3 | KIM J H, CHOI D, KENDE H.The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis [J].The Plant Journal,2003,36(1):94-104. |
4 | KIM J S, MIZOI J, KIDOKORO S,et al. Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes,including DREB2A [J].The Plant Cell,2012,24(8):3393-3405. |
5 | CHEN L, LUAN Y S, ZHAI J M.Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco[J].Plant Cell Reports,2015,34(12):2013-2025. |
6 | WANG M, WANG Q L, ZHANG B H.Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.)[J].Gene,2013,530(1):26-32. |
7 | YUAN S R, ZHAO J M, LI Z G,et al.MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass[J].Horticulture Research,2019,6(1):48. |
8 | RODRIGUEZ R E, MECCHIA M A, DEBERNARDI J M,et al.Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J].Development,2010,137(1):103-112. |
9 | DEBERNARDI J M, MECCHIA M A, VERCRUYSSEN L,et al.Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J].The Plant Journal,2014,79(3):413-426. |
10 | BELTRAMINO M, ERCOLI M F, DEBERNARDI J M,et al.Robust increase of leaf size by Arabidopsis thaliana GRF3-like transcription factors under different growth conditions[J].Scientific Reports,2018,8(1):13447. |
11 | HORIGUCHI G, KIM G T, TSUKAYA H.The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana [J].The Plant Journal,2005,43(1):68-78. |
12 | VERCRUYSSEN L, TOGNETTI V B, GONZALEZ N,et al.GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division,photosynthesis,and leaf longevity[J].Plant Physiology,2015,167(3):817-832. |
13 | VERCRUYSSE J, BAEKELANDT A, GONZALEZ N,et al.Molecular networks regulating cell division during Arabidopsis leaf growth[J].Journal of Experimental Botany,2020,71(8):2365-2378. |
14 | CHANDRAN V, WANG H, GAO F,et al.miR396-OsGRFs module balances growth and rice blast disease-resistance[J].Frontiers in Plant Science,2019,9:1999. |
15 | CHEN S, WANG Y C, YU L L,et al.Genome sequence and evolution of Betula platyphylla [J].Horticulture Research,2021,8(1):37. |
16 | 吴迪.白桦BpDof4基因的抗旱调控机制[D].沈阳:沈阳农业大学,2023. |
WU D.Drought resistance regulation mechanism of BpDof4 gene in Betula platyphylla [D].Shenyang:Shenyang Agricultural University,2023. | |
17 | 张杰,顾宸瑞,李慧玉,等.白桦四倍体半同胞家系生长和材性性状的变异及选择[J].东北林业大学学报,2024,52(10):7-14,26. |
ZHANG J, GU C R, LI H Y,et al.Variation and selection of growth and wood properties of tetraploid half-sib families of Betula platyphylla [J].Journal of Northeast Forestry University,2024,52(10):7-14,26. | |
18 | 邓长贺.大兴安岭的白桦树资源开发与利用[J].林业科技情报,2023,55(3):52-54. |
DENG C H.Development and utilization of birch resources in Greater Khingan[J].Forestry Science and Technology Information,2023,55(3):52-54. | |
19 | WANG M, ZHAO Y H, ZHEN Z,et al.Individual-tree diameter growth model for Korean pine plantations based on optimized interpolation of meteorological variables[J].Journal of Forestry Research,2021,32(4):1535-1552. |
20 | CHEN C J, WU Y, LI J W,et al.TBtools-Ⅱ:a “one for all,all for one” bioinformatics platform for biological big-data mining[J].Molecular Plant,2023,16(11):1733-1742. |
21 | SONG Q X, LI Q T, LIU Y F,et al.Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants[J].Journal of Experimental Botany,2013,64(14):4329-4341. |
22 | CHENG D W, LIU Y Y, WANG Y,et al.Establishment of high-efficiency genome editing in white birch (Betula platyphylla Suk.)[J].Plant Biotechnology Journal,2024,22(1):7-9. |
23 | GENG W L, LI Y Y, SUN D Q,et al.Prediction of the potential geographical distribution of Betula platyphylla Suk.in China under climate change scenarios[J].PLoS One,2022,17(3):e0262540. |
24 | CHI Y, WANG Z H, CHEN S Z,et al.Identification of BpEXP family genes and functional characterization of the BpEXPA1 gene in the stems development of Betula platyphylla [J].Journal of Plant Physiology,2024,303:154361. |
25 | YAN B, LI F R, MA Q,et al.The miR156-SPL4/SPL9 module regulates leaf and lateral branch development in Betula platyphylla [J].Plant Science,2024,338:111869. |
26 | JIA Y Q, ZHAO H M, NIU Y N,et al.Long noncoding RNA from Betula platyphylla,BplncSIR1,confers salt tolerance by regulating BpNAC2 to mediate reactive oxygen species scavenging and stomatal movement[J].Plant Biotechnology Journal,2024,22(1):48-65. |
27 | TAN Z L, WEN X J, WANG Y C. Betula platyphylla BpHOX2 transcription factor binds to different cis-acting elements and confers osmotic tolerance[J].Journal of Integrative Plant Biology,2020,62(11):1762-1779. |
28 | CHENG Z H, WEN S Q, WU Y K,et al.Comparatively evolution and expression analysis of GRF transcription factor genes in seven plant species[J].Plants,2023, 12(15):2790. |
29 | LANTZOUNI O, ALKOFER A, FALTER-BRAUN P,et al.GROWTH-REGULATING FACTORS interact with DELLAs and regulate growth in cold stress[J].The Plant Cell,2020,32(4):1018-1034. |
30 | OMIDBAKHSHFARD M A, PROOST S, FUJIKURA U,et al.Growth-Regulating Factors(GRFs):a small transcription factor family with important functions in plant biology[J].Molecular Plant,2015,8(7):998-1010. |
31 | LIU Y T, GUO P, WANG J,et al.Growth-regulating factors:conserved and divergent roles in plant growth and development and potential value for crop improvement[J].The Plant Journal,2022,113(6):1122-1145. |
32 | PIYA S, LIU J Y, BURCH-SMITH T,et al.A role for Arabidopsis growth-regulating factors 1 and 3 in growth-stress antagonism[J].Journal of Experimental Botany,2020,71(4):1402-1417. |
33 | KUIJT S J H, GRECO R, AGALOU A,et al.Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors[J].Plant Physiology,2014,164(4):1952-1966. |
34 | OMIDBAKHSHFARD M A, FUJIKURA U, OLAS J J,et al.GROWTH-REGULATING FACTOR 9 negatively regulates Arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia[J].PLoS Genetics,2018,14(7):e1007484. |
35 | PAJORO A, MADRIGAL P, MUIÑO J M,et al.Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development[J].Genome Biology,2014,15(3):R41. |
36 | JATHAR V, SAINI K, CHAUHAN A,et al.Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice[J].New Phytologist,2022,234(3):867-883. |
37 | YIN X H, YUAN Y, HAN X W,et al.Genome-wide identification,characterization,and expression profiling of TaDUF668 gene family in Triticum aestivum [J].Agronomy,2023,13(8):2178. |
38 | WALTHER D, BRUNNEMANN R, SELBIG J.The regulatory code for transcriptional response diversity and its relation to genome structural properties in A.thaliana [J].PLoS Genetics,2007,3(2):e11. |
39 | XIE D W, WANG X N, FU L S,et al.Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress[J].Journal of Genetics,2015,94(1):55-65. |
40 | GUO J F, LI W, SHANG L G,et al. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1 [J].New Phytologist,2021,230(5):1953-1966. |
41 | SHI C L, YANG S H, CUI Y,et al.Oxidative burst causes loss of tapetal Ubisch body and male sterility in rice[J].New Phytologist,2024,244(1):10-15. |
42 | YANG R, SUN Y, ZHU X L,et al.The tuber-specific StbHLH93 gene regulates proplastid-to-amyloplast development during stolon swelling in potato[J].New Phytologist,2024,241(4):1676-1689. |
43 | LIU Y R, YAN J P, WANG K X,et al.MiR396-GRF module associates with switchgrass biomass yield and feedstock quality[J].Plant Biotechnology Journal,2021,19(8):1523-1536. |
44 | WERADUWAGE S M, CHEN J, ANOZIE F C,et al.The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana [J].Frontiers in Plant Science,2015,6:167. |
45 | WANG J N, ZHOU H J, ZHAO Y Q,et al.Characterization of poplar growth-regulating factors and analysis of their function in leaf size control[J].BMC Plant Biology,2020,20(1):509. |
46 | LAZZARA F E, RODRIGUEZ R E, PALATNIK J F.Molecular mechanisms regulating GROWTH-REGULATING FACTORS activity in plant growth,development,and environmental responses[J].Journal of Experimental Botany,2024,75(14):4360-4372. |
47 | WANG X Y, YU S, LI B X,et al.A microRNA396b-growth regulating factor module controls castor seed size by mediating auxin synthesis[J].Plant Physiology,2024,196(2):916-930. |
48 | LIU Z Y, ZHANG T Q, XU R T,et al. BpGRP1 acts downstream of BpmiR396c/BpGRF3 to confer salt tolerance in Betula platyphylla [J].Plant Biotechnology Journal,2024,22(1):131-147. |
[1] | 喻心怡, 冀慧玥, 路萍萍, 周嘉裕, 廖海. 植物IPP基因的生物信息学分析[J]. 植物研究, 2024, 44(5): 774-782. |
[2] | 王珊珊, 王瑞, 樊二勤, 付鹏跃, 曲冠证, 王楠. 楸树DELLA基因家族生信分析及CbuGRAS9的功能分析[J]. 植物研究, 2024, 44(1): 139-151. |
[3] | 陈柄华, 张杰, 刘桂丰, 李思婷, 高元科, 李慧玉, 李天芳. 白桦半同胞家系纸浆材优良家系选择及选择方法评价[J]. 植物研究, 2023, 43(5): 690-699. |
[4] | 郑占敏, 商玉冰, 周广波, 肖迪, 刘轶, 由香玲. PsnHB13与PsnHB15在小黑杨中的遗传转化与功能分析[J]. 植物研究, 2023, 43(3): 340-350. |
[5] | 王景哲, 牛朝奎, 梁馨元, 申晨静, 尹静. 水杨酸在白桦苗期抵御盐碱胁迫中的调控作用[J]. 植物研究, 2023, 43(3): 379-387. |
[6] | 廖诗贤, 王宇婷, 董立本, 顾咏梅, 贾丰璘, 姜廷波, 周博如. 小黑杨转录因子PsnbZIP1应答盐胁迫功能分析[J]. 植物研究, 2023, 43(2): 288-299. |
[7] | 刘森尧, 贾丰璘, 国庆, 樊高锋, 周博如, 姜廷波. 小黑杨转录因子PsnbHLH162基因在盐和低温胁迫下应答分析[J]. 植物研究, 2023, 43(2): 300-310. |
[8] | 杜金霞, 申婷婷, 王浩然, 林一萍, 李慧玉, 张连飞. 白桦BpSPL9基因抑制表达载体的构建及遗传转化研究[J]. 植物研究, 2023, 43(1): 30-35. |
[9] | 黄安瀛, 夏德安, 张洋, 那冬晨, 燕青, 魏志刚. PtrWRKY51基因的克隆及抗旱表达特性分析[J]. 植物研究, 2022, 42(6): 1005-1013. |
[10] | 陈华峰, 代龙军, 刘明洋, 郭冰冰, 杨洪, 王立丰. 橡胶树胶乳高表达热激蛋白HbHSP90.4基因抗逆功能分析[J]. 植物研究, 2022, 42(6): 1023-1032. |
[11] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StCRKs基因家族的鉴定分析及响应逆境信号的表达[J]. 植物研究, 2022, 42(6): 1033-1043. |
[12] | 刘明洋, 肖化兴, 王立丰, 梁晓宇, 张宇, 王萌. 橡胶树热激蛋白HbHSP90.8-1基因的克隆与功能分析[J]. 植物研究, 2022, 42(5): 811-820. |
[13] | 王宏鹏, 李一丹, 汪耀, 谭晓宇, 陈成彬, 张力鹏. 菊叶薯蓣DcPMK基因克隆及互作蛋白筛选[J]. 植物研究, 2022, 42(5): 855-865. |
[14] | 陈坤, 方功桂, 穆怀志, 姜静. 白桦BpPIN3基因启动子序列及应答特性分析[J]. 植物研究, 2022, 42(4): 592-601. |
[15] | 王雪莹, 王瑞琪, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨CNGC家族全基因组鉴定及胁迫响应分析[J]. 植物研究, 2022, 42(4): 613-625. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||