Bulletin of Botanical Research ›› 2024, Vol. 44 ›› Issue (5): 641-654.doi: 10.7525/j.issn.1673-5102.2024.05.001
• Review • Next Articles
Xiuying MA1,2, Jinke LI3, Xiaoyang ZHOU3, Shaoliang CHEN2()
Received:
2024-02-19
Online:
2024-09-20
Published:
2024-09-23
Contact:
Shaoliang CHEN
E-mail:lschen@bjfu.edu.cn
CLC Number:
Xiuying MA, Jinke LI, Xiaoyang ZHOU, Shaoliang CHEN. Research Progress of Ca2+-ATPase Involved in Regulation of Plant Salt Tolerance[J]. Bulletin of Botanical Research, 2024, 44(5): 641-654.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2024.05.001
Table 1
The information of Ca2+-ATPase gene family members in plants under salt stress
物种名称 Species | 基因名称 Gene name | 长度 Length/bp | 分子量 Molecular weight/kDa | 跨膜结构域 Transmembrane domain | 内含子 Introns | N端自抑制结构域 N-terminal autoinhibitory domains | 亚细胞定位 Subcellular localization | 功能 Function | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|---|
大豆 Glycine max | SCA1 | 3 042 | 110.4 | 10 | 6 | N端结构域包含2个钙调蛋白绑定序列 The N-terminal domain containing two calmodulin binding sequences | 质膜 Plasma membrane | 提高耐盐性 Increased salt tolerance | [ |
GmACA8 | 117.9 | 10 | 4 | 不包含 Not containing | 质膜 Plasma membrane | 提高耐盐性 Increased salt tolerance | [ | ||
GmACA9 | 119.3 | 10 | 6 | 包含 Containing | 质膜 Plasma membrane | ||||
GmACA10 | 120.8 | 10 | 6 | 包含 Containing | 质膜 Plasma membrane | ||||
GmACA12 | 118.0 | 8 | 6 | 包含 Containing | 质膜 Plasma membrane | ||||
GmACA13 | 113.1 | 10 | 34 | 包含 Containing | 质膜 Plasma membrane | ||||
GmACA11 | 113.5 | 8 | 6 | 包含 Containing | 液泡膜 Tonoplast | 提高耐盐性 Increased salt tolerance | [ | ||
GmECA1 | 116.4 | 10 | 7 | 不包含 Not containing | 内质网 Endoplasmic reticulum | 提高耐盐性 Increased salt tolerance | [ | ||
GmACA2 | 110.6 | 10 | 6 | 包含 Containing | 内质网 Endoplasmic reticulum | ||||
GmECA3 | 109.9 | 8 | 33 | 不包含 Not containing | 高尔基体 Golgi | 负向调控盐胁迫 Negative regulation of salt stress | [ | ||
GmACA1 | 5 870 | 111.3 | 10 | 6 | 包含 Containing | 在盐胁迫下被快速诱导 Be quickly induced by salt stress | [ | ||
GmACA2 | 5 937 | 110.6 | 10 | 6 | 包含 Containing | ||||
GmACA12 | 11 316 | 118.0 | 8 | 6 | 包含 Containing | ||||
GmACA13 | 18 907 | 113.1 | 10 | 34 | 包含 Containing | ||||
GmACA22 | 3 885 | 8 | 3 | 不包含 Not containing | |||||
GmACA23 | 3 844 | 10 | 0 | 不包含 Not containing | |||||
GmACA25 | 4 367 | 10 | 0 | 不包含 Not containing | |||||
GmACA26 | 4 072 | 10 | 1 | ||||||
野生大豆 Glycine soja | GsACA1 | 提高耐盐性 Increased salt tolerance | [ | ||||||
水稻 Oryza sativa | OsACA6 | 3 267 | 117.66 | 10 | 34 | 包含 Containing | 质膜 Plasma membrane | 提高耐盐性 Increased salt tolerance | [ |
籼稻 Oryza sativa subsp. indica | OsACA4 | 3 060 | 6 | 液泡膜 Tonoplast | 提高耐盐性 Increased salt tolerance | [ [ | |||
水稻 Oryza sativa ssp. indica | OsACA7 | 3 222 | 8 | 包含 Containing | 高尔基体 Golgi | 提高耐盐性 Increased salt tolerance | [ [ | ||
OsACA5 | 3 102 | 6 | 不包含 Not containing | ||||||
拟南芥 Arabidopsis thaliana | AtACA4 | 3 093 | 113 | 10 | 6 | N端含有1个钙调素结合位点的自抑制结构域 The N terminus containing an autoinhibitory domain with a binding site for calmodulin | 液泡膜 Tonoplast | 提高耐盐性 Increased salt tolerance | [ [ |
AtACA11 | 3 078 | 137 | 10 | 6 | N端自身抑制区域的前37个残基中鉴定了钙调素结合域 A calmodulin binding domain identified within the first 37 residues of the N-terminal autoinhibitory region | 液泡膜 Tonoplast | 提高耐盐性 Increased salt tolerance | [ [ | |
ACA2p | 110 | 10 | N端结构域的前36个残基内鉴定了1个钙调素结合序列 A calmodulin-binding sequence identified within the first 36 residues of the N-terminal domain | 核膜 Nuclear membrane | 可能在核膜上发挥作用 Potential function at the nuclear membrane | [ [ | |||
AtACA2 | 3 045 | 10 | 6 | 包含 Containing | 内质网 Endoplasmic reticulum | 提高耐盐性 Increased salt tolerance | [ [ | ||
AtECA3 | 2 997 | 33 | 不包含 Not containing | 高尔基体 Golgi | 提高耐盐性 Increased salt tolerance | [ | |||
苔藓 Physcomitrella patens | PCA1 | 10 | 33 | 包含 Containing | 液泡膜 Tonoplast | 提高耐盐性 Increased salt tolerance | [ | ||
苜蓿 Medicago truncatula | MCA8 | 核膜 Nuclear membrane | 对核溶质Ca2+峰值至关重要 Critical for nuclear solute Ca2+ peaks | [ | |||||
番茄 Lycopersicon esculentum | LCA1 gLCA13 | 116 | 8 | 6 | 不包含 Not containing | 内质网 Endoplasmic reticulum | 提高耐盐性 Increased salt tolerance | [ | |
SLyACA1 | 6 | 提高耐盐性 Increased salt tolerance | [ | ||||||
SLyACA5 | 6 | ||||||||
SLyACA6 | 32 | ||||||||
烟草 Nicotiana tabacum | cDNA | 1 149 | 6 | 不包含 Not containing | 内质网 Endoplasmic reticulum | 提高耐盐性 Increased salt tolerance | [ | ||
小麦 Triticum aestivum | TaACA2 | 110.5 | 8.56 | 0 | 不包含 Not containing | 质膜 Plasma membrane | 提高耐盐性 Increased salt tolerance | [ | |
TaACA3 | 124.3 | 10.00 | 33 | 包含 Containing | 质膜 Plasma membrane | ||||
TaECA3 | 105.6 | 6.72 | 21 | 不包含 Not containing | 质膜 Plasma membrane | ||||
茶树 Camellia sinensis | c251091.graph_c0 | 提高耐盐性 Increased salt tolerance | [ | ||||||
c195283.graph_c1 | |||||||||
TEA027212.1 | |||||||||
大白菜 Brassica pekinensis | Bra031701 | 3 256 | 118.3 | 8 | 33 | 不包含 Not containing | 质膜 Plasma membrane | 提高耐盐性 Increased salt tolerance | [ |
1 | MUNNS R, TESTER M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59:651-681. |
2 | ZHU J K.Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247-273. |
3 | TUTEJA N, MAHAJAN S.Calcium signaling network in plants:an overview[J].Plant Signaling and Behavior,2007,2(2):79-85. |
4 | MAHAJAN S, PANDEY G K, TUTEJA N.Calcium- and salt-stress signaling in plants:shedding light on SOS pathway[J].Archives of Biochemistry and Biophysics,2008,471(2):146-158. |
5 | MAATHUIS F J M.Sodium in plants:perception,signalling,and regulation of sodium fluxes[J].Journal of Experimental Botany,2014,65(3):849-858. |
6 | SHABALA S, WU H H, BOSE J.Salt stress sensing and early signalling events in plant roots:current knowledge and hypothesis[J].Plant Science,2015,241:109-119. |
7 | WILKINS K A, MATTHUS E, SWARBRECK S M,et al.Calcium-mediated abiotic stress signaling in roots[J].Frontiers in Plant Science,2016,7:1296. |
8 | SUN J, WANG M J, DING M Q,et al.H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J].Plant Cell and Environment,2010, 33(6):943-958. |
9 | ZHANG X, SHEN Z D, SUN J,et al.NaCl-elicited,vacuolar Ca2+ release facilitates prolonged cytosolic Ca2+ signaling in the salt response of Populus euphratica cells[J].Cell Calcium,2015,57(5/6):348-365. |
10 | STAEL S, WURZINGER B, MAIR A,et al.Plant organellar calcium signalling:an emerging field[J].Journal of Experimental Botany,2012,63(4):1525-1542. |
11 | CASE R M, EISNER D, GURNEY A,et al.Evolution of calcium homeostasis:from birth of the first cell to an omnipresent signalling system[J].Cell Calcium,2007, 42(4/5):345-350. |
12 | ALLAN C, MORRIS R J, MEISRIMLER C N.Encoding,transmission,decoding,and specificity of calcium signals in plants[J].Journal of Experimental Botany,2022,73(11):3372-3385. |
13 | BONZA M C, DE MICHELIS M I.The plant Ca2+-ATPase repertoire:biochemical features and physiological functions[J].Plant Biology,2011,13(3):421-430. |
14 | HUDA K M K, YADAV S, BANU M S A,et al.Genome-wide analysis of plant-type Ⅱ Ca2+ ATPases gene family from rice and Arabidopsis:potential role in abiotic stresses[J].Plant Physiology and Biochemistry,2013,65:32-47. |
15 | ANIL V S, RAJKUMAR P, KUMAR P,et al.A plant Ca2+ pump,ACA2,relieves salt hypersensitivity in yeast:modulation of cytosolic calcium signature and activation of adaptive Na+ homeostasis[J].Journal of Biological Chemistry,2008,283(6):3497-3506. |
16 | WAN S Q, WANG W D, ZHOU T S,et al.Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress[J].Plant Growth Regulation,2018,84(3):481-492. |
17 | BOSSI J G, KUMAR K, BARBERINI M L,et al.The role of P-type IIA and P-type IIB Ca2+-ATPases in plant development and growth[J].Journal of Experimental Botany,2020,71(4):1239-1248. |
18 | PEDERSEN C N S, AXELSEN K B, HARPER J F,et al.Evolution of plant P-type ATPases[J].Frontiers in Plant Science,2012,3:31. |
19 | DEMIDCHIK V, SHABALA S, ISAYENKOV S,et al.Calcium transport across plant membranes:mechanisms and functions[J].New Phytologist,2018,220(1):49-69. |
20 | FUGLSANG A T, PALMGREN M.Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment[J].Plant Physiology,2021,187(4):1856-1875. |
21 | HUDA K M K, BANU M S A, TUTEJA R,et al.Global calcium transducer P-type Ca2+-ATPases open new avenues for agriculture by regulating stress signalling[J].Journal of Experimental Botany,2013,64(11):3099-3109. |
22 | TIDOW H, NISSEN P.Structural diversity of calmodulin binding to its target sites[J].The FEBS Journal,2013,280(21):5551-5565. |
23 | PALMGREN M G, NISSEN P.P-type ATPases[J].Annual Review of Biophysics,2011,40:243-266. |
24 | MORTH J P, PEDERSEN B P, BUCH-PEDERSEN M J,et al.A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps[J].Nature Reviews Molecular Cell Biology,2011,12(1):60-70. |
25 | MØLLER J V, OLESEN C, WINTHER A M L,et al.The sarcoplasmic Ca2+-ATPase:design of a perfect chemi-osmotic pump[J].Quarterly Reviews of Biophysics,2010,43(4):501-566. |
26 | BRINI M, CARAFOLI E.Calcium pumps in health and disease[J].Physiological Reviews,2009,89(4):1341-1378. |
27 | TIDOW H, POULSEN L R, ANDREEVA A,et al.A bimodular mechanism of calcium control in eukaryotes[J].Nature,2012,491:468-472. |
28 | ASTEGNO A, BONZA M C, VALLONE R,et al. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity[J].Journal of Biological Chemistry,2017,292(36):15049-15061. |
29 | BAEKGAARD L, LUONI L, DE MICHELIS M I,et al.The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains[J].Journal of Biological Chemistry,2006,281(2):1058-1065. |
30 | LIMONTA M, ROMANOWSKY S, OLIVARI C,et al. ACA12 is a deregulated isoform of plasma membrane Ca2+-ATPase of Arabidopsis thaliana [J].Plant Molecular Biology,2014,84(4/5):387-397. |
31 | GIACOMETTI S, MARRANO C A, BONZA M C,et al.Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8,a plasma membrane Ca2+-ATPase of Arabidopsis thaliana [J].Journal of Experimental Botany,2012,63(3):1215-1224. |
32 | WANG P C, HSU C C, DU Y Y,et al.Mapping proteome-wide targets of protein kinases in plant stress responses[J].Proceedings of the National Academy of the Sciences of the United States of America,2020,117(6):3270-3280. |
33 | HWANG I,SZE H, HARPER J F.A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump(ACA2) located in the endoplasmic reticulum of Arabidopsis [J].Proceedings of the National Academy of the Sciences of the United States of America,2000, 97(11):6224-6229. |
34 | COSTA A, LUONI L, MARRANO C A,et al.Ca2+-dependent phosphoregulation of the plasma membrane Ca2+-ATPase ACA8 modulates stimulus-induced calcium signatures[J].Journal of Experimental Botany,2017,68(12):3215-3230. |
35 | CHEN Y M, HOEHENWARTER W, WECKWERTH W.Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment[J].The Plant Journal,2010,63(1):1-17. |
36 | BENSCHOP J J, MOHAMMED S, O'FLAHERTY M,et al.Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis [J].Molecular & Cellular Proteomics,2007,6(7):1198-1214. |
37 | NIITTYLÄ T, FUGLSANG A T, PALMGREN M G,et al.Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis [J].Molecular & Cellular Proteomics,2007,6(10):1711-1726. |
38 | BOCZEK T, LISEK M, FERENC B,et al.Silencing of plasma membrane Ca2+-ATPase isoforms 2 and 3 impairs energy metabolism in differentiating PC12 cells[J].Biomed Research International,2014:735106. |
39 | 王颖.盐胁迫和干旱胁迫下胡杨和意大利杨细胞内Ca2+和Ca2+-ATPase水平的变化[D].北京:北京林业大学,2010. |
WANG Y.Changes of Ca2+ and Ca2+-ATPase activities in cells of Populus euphratica and P .euramericana under salt and drought stress[D].Beijing:Beijing Forestry University,2010. | |
40 | 张宗申,利容千,王建波.Ca2+预处理对热胁迫下辣椒叶肉细胞中Ca2+-ATP酶活性的影响[J].植物生理学报,2001,27(6):451-454. |
ZHANG Z S, LI R Q, WANG J B.Effect of Ca2+ pretreatment on the Ca2+-ATPase activity in the mesophyll cells of pepper seedling under heat stress[J].Plant Physiology Journal,2001,27(6):451-454. | |
41 | CHUNG W S, LEE S H, KIM J C,et al.Identification of a calmodulin-regulated soybean Ca2+-ATPase(SCA1) that is located in the plasma membrane[J].The Plant Cell,2000,12(8):1393-1407. |
42 | WANG J, FU X J, ZHANG S,et al.Evolutionary and regulatory pattern analysis of soybean Ca2+ ATPases for abiotic stress tolerance[J].Frontiers in Plant Science,2022,13:898256. |
43 | ZENG H Q, ZHAO B Q, WU H C,et al.Comprehensive in silico characterization and expression profiling of nine gene families associated with calcium transport in soybean[J].Agronomy,2020,10(10):1539. |
44 | SUN M Z, JIA B W, CUI N,et al.Functional characterization of a Glycine soja Ca2+ ATPase in salt-alkaline stress responses[J].Plant Molecular Biology,2016,90(4):419-434. |
45 | HUDA K M K, BANU M S A, GARG B,et al. OsACA6,a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes[J].The Plant Journal,2013,76(6):997-1015. |
46 | YAMADA N, THEERAWITAYA C, CHA-UM S,et al.Expression and functional analysis of putative vacuolar Ca2+-transporters (CAXs and ACAs) in roots of salt tolerant and sensitive rice cultivars[J].Protoplasma,2014,251(5):1067-1075. |
47 | SINGH A, KANWAR P, YADAV A K,et al.Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice[J].The FEBS Journal,2014,281(3):894-915. |
48 | GEISLER M, FRANGNE N, GOMÈS E,et al.The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast[J].Plant Physiology,2000,124(4):1814-1827. |
49 | LEE S M, KIM H S, HAN H J,et al.Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase(ACA11) that is localized to vacuole membranes in Arabidopsis [J].FEBS Letters,2007,581(21):3943-3949. |
50 | HONG B M, ICHIDA A, WANG Y W,et al.Identification of a calmodulin-regulated Ca2+-ATPase in the endoplasmic reticulum[J].Plant Physiology,1999,119(4):1165-1176. |
51 | HARPER J F, HONG B M, HWANG I,et al.A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain[J].Journal of Biological Chemistry,1998,273(2):1099-1106. |
52 | QUDEIMAT E, FALTUSZ A M C, WHEELER G,et al.A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens [J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(49):19555-19560. |
53 | CAPOEN W, SUN J, WYSHAM D,et al.Nuclear membranes control symbiotic calcium signaling of legumes[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(34):14348-14353. |
54 | WIMMERS L E, EWING N N, BENNETT A B.Higher plant Ca2+-ATPase:primary structure and regulation of mRNA abundance by salt[J].Proceedings of the National Academy of Sciences of the United States of America,1992,89(19):9205-9209. |
55 | 刘宇欣,束艺,张念,等.茄科植物Ca2+-ATPase基因家族鉴定及分析[J].分子植物育种,2021,19(13):4268-4277. |
LIU Y X, SHU Y, ZHANG N,et al.Identification and analysis of Ca2+-ATPase gene family in Solanaceae[J].Molecular Plant Breeding,2021,19(13):4268-4277. | |
56 | PEREZ-PRAT E, NARASIMHAN M L, BINZEL M L,et al.Induction of a putative Ca2+-ATPase mRNA in NaCl-adapted cells[J].Plant Physiology,1992,100(3):1471-1478. |
57 | TANEJA M, UPADHYAY S K.Molecular characterization and differential expression suggested diverse functions of P-type Ⅱ Ca2+ ATPases in Triticum aestivum L[J].BMC Genomics,2018,19(1):389. |
58 | 王洁,吴晓宇,杨柳,等.大白菜ACA基因家族的全基因组鉴定与表达分析[J].中国农业科学,2021,54(22):4851-4868. |
WANG J, WU X Y, YANG L,et al.Genome-wide identification and expression analysis of ACA gene family in Brassica rapa [J].Scientia Agricultura Sinica,2021, 54(22):4851-4868. | |
59 | 樊秀彩,关军锋,刘崇怀,等.草莓果实成熟过程中Ca2+-ATPase活性变化及酶学特性[J].果树学报,2003,20(2):99-102. |
FAN X C, GUAN J F, LIU C H,et al.Activity and characters of Ca2+-ATPase during strawberry fruit ripening[J].Journal of Fruit Science,2003,20(2):99-102. | |
60 | ZHU X H, CAPLAN J, MAMILLAPALLI P,et al.Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death[J].The EMBO Journal,2010,29(5):1007-1018. |
61 | HILLEARY R, PAEZ-VALENCIA J, VENS C S,et al.Tonoplast-localized Ca2+ pumps regulate Ca2+ signals during pattern-triggered immunity in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(31):18849-18857. |
62 | LIU J H, HU J, LI Y H,et al.Calcium channels and transporters in plants under salinity stress[M].London:Academic Press,2021:157-169. |
63 | MANSOUR M M F.Role of vacuolar membrane transport systems in plant salinity tolerance[J].Journal of Plant Growth Regulation,2023,42:1364-1401. |
64 | SEIFIKALHOR M, ALINIAEIFARD S, SHOMALI A,et al.Calcium signaling and salt tolerance are diversely entwined in plants[J].Plant Signaling and Behavior,2019,14(11):1665455. |
65 | RUDNYTSKA M V, PALLADINA T A.Effect of preparations methyure and ivine on Ca2+-ATPases activity in plasma and vacuolar membrane of corn seedling roots under salt stress conditions[J].The Ukrainian Biochemistry Journal,2017,89(1):76-81. |
66 | HARPER J F, BRETON G, HARMON A.Decoding Ca2+ signals through plant protein kinases[J].Annual Review of Plant Biology,2004,55:263-288. |
67 | BKAILY G.The nucleus:A cell within a cell-Introduction[J].Canadian Journal of Physiology and Pharmacology,2006,84:279-507. |
68 | KUMAR V, JONG Y J I, O'MALLEY K L.Activated nuclear metabotropic glutamate receptor mGlu5 couples to nuclear Gq/11 proteins to generate inositol 1,4,5-trisphosphate-mediated nuclear Ca2+ release[J].Journal of Biological Chemistry,2008,283(20):14072-14083. |
69 | CHARPENTIER M.Calcium signals in the plant nucleus:origin and function[J].Journal of Experimental Botany,2018,69(17):4165-4173. |
70 | LIANG F, CUNNINGHAM K W, HARPER J F,et al. ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(16):8579-8584. |
71 | WU Z Y, LIANG F, HONG B M,et al.An endoplasmic reticulum-bound Ca2+/Mn2+ pump,ECA1,supports plant growth and confers tolerance to Mn2+ stress[J].Plant Physiology,2002,130(1):128-137. |
72 | CORSO M, DOCCULA F G, DE MELO J R F,et al.Endoplasmic reticulum-localized CCX2 is required for osmotolerance by regulating ER and cytosolic Ca2+ dynamics in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(15):3966-3971. |
73 | ORDENES V R, MORENO I, MATURANA D,et al.In vivo analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics[J].Cell Calcium,2012,52(5):397-404. |
74 | LESHEM Y, MELAMED-BOOK N, CAGNAC O,et al.Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(47):18008-18013. |
75 | LIU W, YUAN X T, ZHANG Y Y,et al.Effects of salt stress and exogenous Ca2+ on Na+ compartmentalization,ion pump activities of tonoplast and plasma membrane in Nitraria tangutorum Bobr.leaves[J].Acta Physiologiae Plantarum,2014,36(8):2183-2193. |
76 | 王文昌,乔飞,江雪飞,等.盐胁迫下巴西蕉幼苗部分细胞膜系统Ca2+-ATPase的活性变化[J].植物生理学报,2016,52 (8):1199-1206. |
WANG W C, QIAO F, JIANG X F,et al.Changes of Ca2+-ATPase activities of part of cell membrane system in Brazilian banana seedling under salt stress[J].Plant Physiology Journal,2016,52 (8):1199-1206. | |
77 | 王文昌,周双云,乔飞,等.实时荧光定量检测盐胁迫下香蕉幼苗CaM和Ca2+-ATPase基因的相对表达量[J].分子植物育种,2017,15(5):1745-1751. |
WANG W C, ZHOU S Y, QIAO F,et al.The relative expression of CaM and Ca2+-ATPase genes in banana seedlings under salt stress by real-time fluorescence quantitative assay[J].Molecular Plant Breeding,2017,15(5):1745-1751. | |
78 | LU Q H, WANG Y Q, YANG H B.Effect of exogenous calcium on physiological characteristics of salt tolerance in Tartary buckwheat [J].Biologia,2021,76(12):3621-3630. |
79 | TUNA A L, KAYA C, ASHRAF M,et al.The effects of calcium sulphate on growth,membrane stability and nutrient uptake of tomato plants grown under salt stress[J].Environmental and Experimental Botany,2007,59(2):173-178. |
80 | GHOSH S, BHERI M, BISHT D,et al.Calcium signaling and transport machinery:potential for development of stress tolerance in plants[J].Current Plant Biology,2022,29:100235. |
81 | KREBS M, HELD K, BINDER A,et al.FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics[J].The Plant Journal,2012, 69(1):181-192. |
82 | COSTA A, CANDEO A, FIERAMONTI L,et al.Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy[J].PLoS One,2013,8(10):e75646. |
83 | CANDEO A, DOCCULA F G, VALENTINI G,et al.Light sheet fluorescence microscopy quantifies calcium oscillations in root hairs of Arabidopsis thaliana [J].Plant and Cell Physiology,2017,58(7):1161-1172. |
[1] | Hengfeng ZHANG, Yangwu HE, Huanchao ZHANG, Qingcui WEI. Metabolomics Analysis of Lagerstroemia indica in Response to Salt and Alkali Stress [J]. Bulletin of Botanical Research, 2024, 44(3): 420-430. |
[2] | Fazhi FANG, Huiying GUI, Zhaojia LI, Xiaofeng ZHANG. Physiological Adaptation of Six Mangrove Seedlings to Different Salinity [J]. Bulletin of Botanical Research, 2023, 43(6): 881-889. |
[3] | Lei XU, Xiao XU, Qinsong LIU. Effects of Exogenous Salicylic Acid on Antioxidant System and Gene Expression of Davidia involucrata Seedlings under Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(4): 572-581. |
[4] | Li LI, Xin WANG, Yuejing ZHANG, Lingyun JIA, Hailong PANG, Hanqing FENG. Effects of Abiotic Stresses on the Intracellular and Extracellular ATP Levels of Tobacco Suspension Cells [J]. Bulletin of Botanical Research, 2023, 43(2): 179-185. |
[5] | Shixian LIAO, Yuting WANG, Liben DONG, Yongmei GU, Fenglin JIA, Tingbo JIANG, Boru ZHOU. Function Analysis of the Transcription Factor PsnbZIP1 of Populus simonii×P. nigra in Response to Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 288-299. |
[6] | Senyao LIU, Fenglin JIA, Qing GUO, Gaofeng FAN, Boru ZHOU, Tingbo JIANG. Response Analysis of Transcription Factor PsnbHLH162 Gene in Populus simonii × P. nigra under Salt Stress and Low Temperature Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 300-310. |
[7] | Liran YUE, Yingjie LIU, Chenxu LIU, Yunwei ZHOU. Cloning and Functional Analysis of miR398a from Chrysanthemum× grandiflora in Response to Salt Stress [J]. Bulletin of Botanical Research, 2022, 42(6): 986-996. |
[8] | Denggao LI, Rui LIN, Qinghui MU, Na ZHOU, Yanru ZHANG, Wei BAI. Cloning and Functional Analysis of StNPR4 gene in Solanum tuberosum [J]. Bulletin of Botanical Research, 2022, 42(5): 821-829. |
[9] | Jiaorao CHEN, Xu XU, Zhangli HU, Shuang YANG. Recent Advances on Salt Stress Sensitivity and Related Calcium Signals in Plants [J]. Bulletin of Botanical Research, 2022, 42(4): 713-720. |
[10] | He CHENG, Shuanghui TIAN, Yang ZHANG, Cong LIU, De’an XIA, Zhigang WEI. Genome-wide Identification and Expression Analysis of nsLTP Gene Family in Populus trichocarpa [J]. Bulletin of Botanical Research, 2022, 42(3): 412-423. |
[11] | Shuang-Hui TIAN, He CHENG, Yang ZHANG, Cong LIU, De-An XIA, Zhi-Gang WEI. Genome-wide Identification and Expressional Analysis of Carotenoid Cleavage Dioxygenases(CCD) Gene Family in Populus trichocarpa under Drought and Salt Stress [J]. Bulletin of Botanical Research, 2021, 41(6): 993-1005. |
[12] | Meng-Xuan REN, Yang ZHANG, Shuang WANG, Rui-Qi WANG, Cong LIU, Zhi-Gang WEI. Genome-wide Identification and Expression Analysis GATA Family of Populus trichocarpa [J]. Bulletin of Botanical Research, 2021, 41(1): 107-118. |
[13] | CAO Ming-Wu, LUO Rui, AN Hui, PANG Qiu-Ying. Physiological Response of Suspension Cells of Helianthus tuberosus to NaCl Stress [J]. Bulletin of Botanical Research, 2019, 39(2): 222-228. |
[14] | ZHAO Xiao-Ju, ZHANG Li-Xia, MAN Xiu-Ling. Effects of Exogenous NO on Seed Germination and Physiological Metabolism in Catharanthus roseus Seedling under NaCl Stress [J]. Bulletin of Botanical Research, 2018, 38(5): 669-674. |
[15] | ZHANG Li-Li, ZHANG Fu-Chun. Transcriptomic Analysis of the Halostachys caspica in Response to Short-term Salt Stress [J]. Bulletin of Botanical Research, 2018, 38(1): 91-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||