植物研究 ›› 2022, Vol. 42 ›› Issue (3): 412-423.doi: 10.7525/j.issn.1673-5102.2022.03.011
程赫1, 田双慧1, 张洋1, 刘聪1, 夏德安1, 魏志刚2()
收稿日期:
2021-03-28
出版日期:
2022-05-20
发布日期:
2022-05-20
通讯作者:
魏志刚
E-mail:zhigangwei1973@163.com
作者简介:
程赫(1996—),女,硕士研究生,主要从事林木抗性育种方面的研究。
基金资助:
He CHENG1, Shuanghui TIAN1, Yang ZHANG1, Cong LIU1, De’an XIA1, Zhigang WEI2()
Received:
2021-03-28
Online:
2022-05-20
Published:
2022-05-20
Contact:
Zhigang WEI
E-mail:zhigangwei1973@163.com
About author:
CHENG He(1996—),female,master,main research direction:tree resistance breeding.
Supported by:
摘要:
植物非特异性脂质转移蛋白(non-specific lipid transfer proteins,nsLTP)是一类多基因家族编码碱性蛋白,负责脂肪酸体外结和与膜之间的磷脂转移,在植物生长发育和逆境胁迫响应中扮演着重要角色。目前为止,尚无模式植物毛果杨(Populus trichocarpa)nsLTP家族的研究报导。本研究从全基因组水平对PtrnsLTP家族成员的基因数量、亲缘关系、基因结构、编码蛋白保守基序等特性进行了分析,结果表明:PtrnsLTP家族共由39个基因组成,进化成5个亚家族,其中A亚族含有6个基因、B亚族含有2个、C亚族含有13个、D亚族含有3个、E亚族含有15个。PtrnsLTP家族包含7对旁系同源基因,其中1对大于1,6对Ka/Ks均远小于1,且这6对基因均处于同一个大的进化分支上,进化压力的不同导致基因间的功能出现了分化,编码蛋白均含有Motif 1和 Motif 2保守基序。利用qRT-PCR技术并结合杨树转录组数据对PtrnsLTP的组织表达与盐胁迫响应特性研究发现:各家族成员在毛果杨根、茎和叶中均有表达且经qRT-PCR技术验证后与网站预测结果基本吻合,有11、15和13个成员分别在根、茎和叶中有较高的表达,表明该基因家族参与了杨树不同组织的生长发育;NaCl胁迫下,该家族39个基因中分别有26个成员在根部、14个成员在叶部表达量随着胁迫时间的增加而升高,而32个基因在茎部表现为先升高后降低的趋势。本研究结果对于PtrnsLTP家族基因生物学功能的鉴定与盐胁迫响应基因资源的工作有着积极的推动作用。
中图分类号:
程赫, 田双慧, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨nsLTP基因家族全基因组水平鉴定及其表达特性分析[J]. 植物研究, 2022, 42(3): 412-423.
He CHENG, Shuanghui TIAN, Yang ZHANG, Cong LIU, De’an XIA, Zhigang WEI. Genome-wide Identification and Expression Analysis of nsLTP Gene Family in Populus trichocarpa[J]. Bulletin of Botanical Research, 2022, 42(3): 412-423.
表1
PtrnsLTP 定量引物序列
定量引物名称 qRT-PCR primer name | F端引物序列(5′—3′) F-terminal primer sequence(5′—3′) | R端引物序列(5′—3′) R-terminal primer sequence(5′—3′) |
---|---|---|
PtrnsLTP1.1 | ATCTCTCCAAGTGTAGTAGCGGC | GGTTTCCCAGTGCCATTCAT |
PtrnsLTP1.2 | TCACACTCAAACAACAACCAAGA | AATCAGAATTCCGATCACTGCA |
PtrnsLTP1.3 | AGTGTAGTAGCGGCAGCAATG | GGCCTCAGGTCCTTGATTACAT |
PtrnsLTP1.4 | CAAGTGTAGTAGCGGCAGCAAT | CAGCAGGTGGTTTCCCAGTA |
PtrnsLTP1.5 | GCACATCCTTGTGGTAGCACTT | AAGAGTACACAAGCAAGGCTGG |
PtrnsLTP1.6 | AGCACTGTTGATGAAAAGGCA | GTTGACGCTTGTAGAGACGGG |
PtrnsLTP2.1 | GAGTCTAGTGCTTGCCCTCATG | CACCTTTGGTCCCTTTTTGG |
PtrnsLTP2.2 | AGATGGCGAAGAGGCAGC | GCCCCAGAAACAGCCTTG |
PtrnsLTP4.1 | TGCTTATAGCGATGGTTGTTAGTG | AGGATTTCAAACAGTTGCAGACC |
PtrnsLTP4.2 | GCTTGTAGCGATGGTTGTTAGTG | CTTACCAGCCAAGGATTTCAAAC |
PtrnsLTP4.3 | TGCCTACCAGCAATCTCGTC | CAAAGACAAGGCTTCTGCTCC |
PtrnsLTP6.1 | TGCCTCACCTACCTGAAGAAAG | ACTTTGGAGGCGGTTTGTTT |
PtrnsLTP7.1 | CTCGCATTGTTGGGTTTCTG | GGTCCACGTCGAACTTAGCC |
PtrnsLTP7.2 | CCCCATCTTCAGAGGCACC | CAGTATGAACCTGCGAGAAAATC |
PtrnsLTP8.1 | GGCGACTCCAATGAAGTACATT | AGCACTGGCTCGAAACTGAAG |
PtrnsLTP9.1 | CAAGTGTAGTGGTGGCAGCAAT | GTTCACACAAGGCCTCAGGTC |
PtrnsLTP9.2 | CAAATCCAGATGCTCCCGAT | ACAGCCTTCTCCATGCTAATCA |
PtrnsLTP9.3 | ACGCACAAAGAATTTTGTCGTT | CCTGTCTGCACTGATGGCTTAC |
PtrnsLTP10.1 | CTTGGGTTGTGACTGTGTTGGT | AGGCAGTAACTTTGGAGCAGC |
PtrnsLTP10.2 | TCAATCAAGTTGACGGGGC | AACAGCGCATAGGCAGGC |
PtrnsLTP11.1 | AATAGTGGTGGCTGTGATTGCT | GTAGTAGTCAAGAATGGGAGGCAG |
PtrnsLTP11.2 | GTATTCTGTTTTTTGGGCAGTGA | TCCCTTTTGTCTTTCCTGTTGA |
PtrnsLTP11.3 | CTGTTTTCTGGGCAGTGATTTT | GAGACACTACCCAGCAAGAACG |
PtrnsLTP12.1 | CAATCACATCTTCTACTCCACCAA | GCTTCTGTTCCTTGATCTTGCT |
PtrnsLTP12.2 | TCACTCAAGTCTCTTAGCTCCCC | GTACTAGGGTTGGTGTTCGGTG |
PtrnsLTP12.3 | CTCCTGTTGCTGTTGCTCTCAT | CCACAGAAGCCAGGCAGAGTA |
PtrnsLTP14.1 | ACTTGTCTGCTTGCGTTTCCTA | GATGCAGCCTCATCCTTCATATC |
PtrnsLTP14.2 | AGCAGCAATGAGCACTCATCTAT | ACAGCAAGTCTTTGACGGATCT |
PtrnsLTP14.3 | TCCTTTGTGTGGCTCTATTGCT | GCGGTAGGGTTAGGAGGAGTTA |
PtrnsLTP15.1 | ATTGGTGCTTCTTCTGGCTCA | GCAGGGCTTCTGTTCCTTGAT |
PtrnsLTP15.2 | CAGTGCAGACTCAACTGGCTC | TACAACACTCAGCATTCGGGT |
PtrnsLTP16.1 | TTCATCGGTCTTCTGGGATTG | TCACCTGAAGGCAGCAACTG |
PtrnsLTP16.2 | AACAACCGCCGCTCAACT | GTGGATGTGCTGATCTTGTACG |
PtrnsLTP16.3 | TGATCTGTGCTCTCTTGCTATGC | TTGTTGACATTCTGAACTCCTTTG |
PtrnsLTP16.4 | TGATCTGTGCTCTCTTGCTATGC | CGTTGTTGACATTCTGAACTCCTC |
PtrnsLTP16.5 | TCCACCACTAAAGCAGCGATT | AGTCCAGCAGCAAGAGCAACA |
PtrnsLTP16.6 | GAGAGCCCTTCATTTAGTTTGC | TGAAATCGCTGCTTTAGTGGT |
PtrnsLTP17.1 | TTCGGAGAGTAAATGCGAGC | CAGTCCACGCTTCGCTAATC |
PtrnsLTP17.2 | TAACCCAGGGCAGTTGAGC | AAGTGGTGGAGGGTGGTGTAG |
PtrActin | AGGCAGGTTTCGCAGGAGATGA | TCCATCACCAGAATCCAGCACA |
表2
PtrnsLTP 家族概况
基因名称 Gene name | 登录号 Gene ID | 基因的位置 Genomic location | 蛋白长度 Protein length /aa | 分子量 Molecular weight /kDa | 等电点 pI | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|
PtrnsLTP1.1 | Potri.001G023200.1 | 1768060-1768956 | 113 | 12.009 12 | 6.78 | CM |
PtrnsLTP1.2 | Potri.001G023300.1 | 1770676-1771673 | 134 | 14.607 19 | 7.56 | CM |
PtrnsLTP1.3 | Potri.001G232700.1 | 24461327-24462000 | 118 | 11.975 05 | 8.14 | CW |
PtrnsLTP1.4 | Potri.001G232900.1 | 24483523-24484495 | 118 | 12.014 09 | 8.46 | CW |
PtrnsLTP1.5 | Potri.001G271000.1 | 27859786-27860575 | 88 | 9.291 93 | 6.71 | CM |
PtrnsLTP1.6 | Potri.001G460900.1 | 49454026-49454302 | 84 | 8.582 16 | 8.74 | CW |
PtrnsLTP2.1 | Potri.002G012300.1 | 714913-715376 | 124 | 14.124 77 | 8.8 | CW |
PtrnsLTP2.2 | Potri.002G251000.1 | 24097409-24098806 | 102 | 10.740 64 | 4.85 | CM |
PtrnsLTP4.1 | Potri.004G086500.1 | 7250939-7252044 | 118 | 11.809 93 | 9.22 | CW |
PtrnsLTP4.2 | Potri.004G086600.1 | 7257055-7257885 | 118 | 11.668 74 | 9.06 | CW |
PtrnsLTP4.3 | Potri.004G096000.1 | 8252603-8253488 | 93 | 9.645 56 | 9.14 | CM |
PtrnsLTP6.1 | Potri.006G108100.1 | 8428753-8429723 | 116 | 11.881 21 | 9.32 | CW |
PtrnsLTP7.1 | Potri.007G138400.1 | 14998848-14999195 | 115 | 13.108 28 | 5.45 | CW |
PtrnsLTP7.2 | Potri.007G138500.1 | 15002557-15003632 | 153 | 16.955 85 | 6.39 | CW |
PtrnsLTP8.1 | Potri.008G061800.1 | 3715997-3716768 | 119 | 12.545 76 | 8.6 | CM |
PtrnsLTP9.1 | Potri.009G025200.1 | 3644075-3645235 | 118 | 11.870 75 | 8.13 | CW |
PtrnsLTP9.2 | Potri.009G048800.1 | 5396543-5396830 | 95 | 10.243 31 | 9.07 | CW,CM |
PtrnsLTP9.3 | Potri.009G112500.1 | 9594032-9594787 | 109 | 11.662 80 | 8.83 | CM |
PtrnsLTP10.1 | Potri.010G100600.1 | 12200539-12202205 | 120 | 12.268 74 | 9.91 | CM |
PtrnsLTP10.2 | Potri.010G196300.1 | 18966272-18967159 | 119 | 12.541 65 | 8.07 | CM |
PtrnsLTP11.1 | Potri.011G021900.1 | 1852821-1853530 | 118 | 12.831 99 | 8.13 | CW,CM |
PtrnsLTP11.2 | Potri.011G022100.1 | 1860483-1860995 | 119 | 12.987 31 | 8.64 | CW |
PtrnsLTP11.3 | Potri.011G022200.1 | 1869485-1870289 | 119 | 13.027 37 | 8.43 | CW |
PtrnsLTP12.1 | Potri.012G054300.1 | 5504366-5505126 | 93 | 10.033 02 | 9.24 | CW |
PtrnsLTP12.2 | Potri.012G137400.1 | 15263548-15264499 | 94 | 96.432 60 | 6.66 | CM |
PtrnsLTP12.3 | Potri.012G139700.1 | 15398444-15399190 | 118 | 12.415 55 | 4.27 | CW |
PtrnsLTP14.1 | Potri.014G046500.1 | 3643120-3644008 | 117 | 12.105 16 | 6.53 | CW |
PtrnsLTP14.2 | Potri.014G098000.1 | 7655899-7656796 | 127 | 13.578 99 | 9.06 | CW |
PtrnsLTP14.3 | Potri.014G149900.1 | 11496745-11497691 | 103 | 10.687 80 | 8.62 | CM |
PtrnsLTP15.1 | Potri.015G044500.1 | 4411154-4411923 | 93 | 10.083 00 | 9.36 | CW,CM |
PtrnsLTP15.2 | Potri.015G139100.1 | 14741017-14741301 | 94 | 9.760 28 | 5.97 | CM |
PtrnsLTP16.1 | Potri.016G104300.1 | 10353074-10353978 | 116 | 11.902 98 | 8.11 | CM |
PtrnsLTP16.2 | Potri.016G135400.1 | 13871619-13872561 | 116 | 11.879 93 | 8.89 | CW |
PtrnsLTP16.3 | Potri.016G135500.1 | 13890545-13891464 | 129 | 14.051 54 | 9.36 | CW |
PtrnsLTP16.4 | Potri.016G135700.1 | 13908471-13909450 | 117 | 12.825 26 | 9.23 | CW |
PtrnsLTP16.5 | Potri.016G135800.1 | 13915635-13916479 | 120 | 12.498 66 | 9.26 | CW |
PtrnsLTP16.6 | Potri.016G136000.1 | 13922459-13923572 | 120 | 12.662 74 | 9.01 | CW |
PtrnsLTP17.1 | Potri.017G013200.1 | 1105887-1106566 | 116 | 13.385 69 | 8.03 | CW |
PtrnsLTP17.2 | Potri.017G118700.1 | 13300324-13300829 | 94 | 9.926 79 | 8.68 | CM |
表3
同源基因的Ka/Ks比值及序列一致性
同源基因Paralogues | Ka(JC) | Ks(JC) | Ka/Ks | 同源片段长度 Homologous fragment length /bp | 同源性 Homology /% | |
---|---|---|---|---|---|---|
Gene1 | Gene2 | |||||
PtrnsLTP4.1 | PtrnsLTP4.2 | 0.050 751 | 0.058 338 | 0.869 942 | 339 | 95 |
PtrnsLTP8.1 | PtrnsLTP10.2 | 0.060 735 | 0.274 117 | 0.221 566 | 325 | 90 |
PtrnsLTP9.1 | PtrnsLTP1.3 | 0.117 490 | 0.210 058 | 0.559 323 | 312 | 87 |
PtrnsLTP1.4 | 0.108 696 | 0.241 534 | 0.450 025 | 312 | 87 | |
PtrnsLTP11.2 | PtrnsLTP11.3 | 0.025 754 | 0.064 835 | 0.397 217 | 348 | 97 |
PtrnsLTP16.3 | PtrnsLTP16.4 | 0.112 034 | 0.068 727 | 1.630 148 | 317 | 91 |
PtrnsLTP16.5 | PtrnsLTP16.6 | 0.028 199 | 0.064 493 | 0.437 239 | 346 | 98 |
1 | DENG W J, LI R Q, XU Y W,et al.A lipid transfer protein variant with a mutant eight-cysteine motif causes photoperiod- and-thermo-sensitive dwarfism in rice[J].Journal of Experimental Botany,2019,71(4):1294-1305. |
2 | JOSÉ-ESTANYOL M, GOMIS-RÜTH F X, PUIGDOMÈNECH R.The eight-cysteine motif,a versatile structure in plant proteins[J].Plant Physiology and Biochemistry,2004,42(5):355-365. |
3 | LERCHE M H, KRAGELUND B B, BECH L M,et al.Barley lipid-transfer protein complexed with palmitoyl CoA:the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands[J].Structure,1997,5(2):291-306. |
4 | KADER J C.Proteins and the intracellular exchange of lipids:I.stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber[J].Biochimica et Biophysica Acta(BBA)-Lipids and Lipid Metabolism,1975,380(1):31-44. |
5 | 王洪.油菜非特异性脂转运蛋白基因家族的全基因组水平鉴定和表达分析[D].杨凌:西北农林科技大学,2015. |
WANG H.Genome-wide identification and expression analysis of brnsltps gene family in brassica rapa[D].Yangling:Northwest Agriculture and Forestry University,2015. | |
6 | 孟令波,刘关君,李淑敏,等.黄瓜非特异性脂质转移蛋白基因的序列分析及细菌性角斑病菌浸染下的表达[J].东北农业大学学报,2013,44(1):55-60. |
MENG L B, LIU G J, LI S M,et al.Sequence analyses of non-specific transfer protein from cucumber and expression after challenging by Pseudomonas syringae pv.Lachry-mans [J].Journal of Northeast Agricultural University,2013,44(1):55-60. | |
7 | KINLAW C S, GERTTULA S M, CARTER M C.Lipid transfer protein genes of loblolly pine are members of a complex gene family[J].Plant Molecular Biology,1994,26(4):1213-1216. |
8 | BLUNDELL T L, SIBANDA B L, STERNBERG M J E,et al.Knowledge-based prediction of protein structures and the design of novel molecules[J].Nature,1987,326(6111):347-352. |
9 | DOULIEZ J P, MICHON T, ELMORJANI K,et al.Mini Review:structure,biological and technological functions of lipid transfer proteins and indolines,the major lipid binding proteins from cereal kernels[J].Journal of Cereal Science,2000,32(1):1-20. |
10 | BOUTROT F, CHANTRET N, GAUTIER M F.Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein(nsLtp) gene families and identification of wheat nsLtp genes by EST data mining[J].BMC Genomics,2008,9(1):86. |
11 | SAMUEL D, LIU Y J, CHENG C S,et al.Solution structure of plant nonspecific lipid transfer protein-2 from rice(Oryza sativa)[J].Journal of Biological Chemistry,2002,277(38):35267-35273. |
12 | KADER J C.Lipid-transfer proteins in plants[J].Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:627-654. |
13 | ZHANG D S, LIANG W Q, YIN C S,et al. OsC6,encoding a lipid transfer protein,is required for postmeiotic anther development in rice[J].Plant Physiology,2010,154(1):149-162. |
14 | XIE W Q, ZHAO L Q, BAI W Y,et al.The effects of calmodulin on the lipid-binding activity of CaM-binding protein-10 and maize non-specific lipid transfer protein[J].Journal of Plant Physiology and Molecular Biology,2006,32(6):679-684. |
15 | MOLINA A, SEGURA A, GARCÍA-OLMEDO F.Lipid transfer proteins(nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens[J].FEBS Letters,1993,316(2):119-122. |
16 | GARCÍA-OLMEDO F, MOLINA A, SEGURA A,et al.The defensive role of nonspecific lipid-transfer proteins in plants[J].Trends in Microbiology,1995,3(2):72-74. |
17 | 强晓晶.小盐芥ThPIP1基因的水稻遗传转化及耐盐机理研究[D].北京:中国农业科学院,2015. |
QIANG X J. Thellungiella halophila ThPIPl gene transferring rice and mechanism of salt stress tolerance[D].Beijing:Chinese Academy of Agricultural Sciences,2015. | |
18 | ANDREA P, SNEHA D, HELENE P.Salt stress in Arabidopsis:lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3[J].Molecular Plant,2014,7(4):722-738. |
19 | MCLAUGHLIN J E, BIN-UMERM A, WIDIEZ T,et al.A lipid transfer protein increases the glutathione content and enhances Arabidopsis resistance to a trichothecene mycotoxin[J].PLoS One,2015,10(6):e0130204. |
20 | JUNG H W, KIM K D, HWANG B K.Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene(CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses[J].Planta,2005,221(3):361-373. |
21 | 郜刚,任彩虹,金黎平,等.马铃薯非特异性脂质转移蛋白基因StLTPa1的克隆和表达[J].作物学报,2008,34(9):1510-1517. |
GAO G, REN C H, JIN L P,et al.Cloning,expression and characterization of a non-specific lipid transfer protein gene from potato[J].Acta Agronomica Sinica,2008,34(9):1510-1517. | |
22 | FANG Z W, HE Y Q, LIU Y K,et al.Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat[J].Journal of Integrative Agriculture,2020,19(5):1170-1185. |
23 | TAMURA K, STECHER G, PETERSON D,et al.MEGA6:molecular evolutionary genetics analysis version 6.0[J].Molecular Biology and Evolution,2013,30(12):2725-2729. |
24 | LETUNIC I, BORK P.Interactive Tree of Life (iTOL) v4:recent updates and new developments[J].Nucleic Acids Research,2019,47(W1):W256-W259. |
25 | ZHANG Z, LI J, ZHAO Z Q,et al.KaKs_Calculator:calculating Ka and Ks through model selection and model averaging[J].Genomics,Proteomics & Bioinformatics,2006,4(4):259-263. |
26 | LI J, GAO G Z, XU K,et al.Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L.[J].PLos One,2014,9(1):e84556. |
27 | BLANC G, WOLFE K H.Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J].The Plant Cell,2004,16(7):1667-1678. |
28 | LIU W F, HUANG D W, LIU K,et al.Discovery,identification and comparative analysis of non-specific lipid transfer protein(nsLtp) family in solanaceae[J].Genomics,Proteomics & Bioinformatics,2010,8(4):229-237. |
29 | TSUBOI S, OSAFUNE T, TSUGEKI R,et al.Nonspecific lipid transfer protein in castor bean cotyledon cells:subcellular localization and a possible role in lipid metabolism[J].Journal of Biochemistry,1992,111(4):500-508. |
30 | ARONDEL V, VERGNOLLE C, CANTREL C,et al.Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana [J].Plant Science,2000,157(1):1-12. |
31 | HINCHA D K, NEUKAMM B, SROR H A M,et al.Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family[J].Plant Physiology,2001,125(2):835-846. |
32 | TREVIÑO M B, O’CONNELL M A.Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression[J].Plant Physiology,1998,116(4):1461-1468. |
33 | JI J L, LÜ H H, YANG L M,et al.Genome-wide identification and characterization of non-specific lipid transfer proteins in cabbage[J].PeerJ,2018,6:e5379. |
34 | SAKHARKAR M K, CHOW V T K, KANGUEANE P.Distributions of exons and introns in the human genome[J].In Silico Biology,2004,4(4):387-393. |
35 | JAIN M, KHURANA P, TYAGI A K,et al.Genome-wide analysis of intronless genes in rice and Arabidopsis [J].Functional & Integrative Genomics,2008,8(1):69-78. |
36 | D’AGOSTINO N, BUONANNO M, AYOUB J,et al.Identification of non-specific Lipid Transfer Protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein[J].Scientific Reports,2019,9(1):1607. |
37 | LIANG W J, MA X L, WAN P,et al.Plant salt-tolerance mechanism:a review[J].Biochemical and Biophysical Research Communications,2018,495(1):286-291. |
38 | COLCOMBET J, HIRT H. Arabidopsis MAPKs:a complex signalling network involved in multiple biological processes[J].Biochemical Journal,2008,413(2):217-226. |
[1] | 隋德宗, 王保松. 盐胁迫下乌桕无性系叶片的比较蛋白组学研究[J]. 植物研究, 2023, 43(5): 679-689. |
[2] | 徐磊, 胥晓, 刘沁松. 外源水杨酸对盐胁迫下珙桐幼苗抗氧化系统和基因表达的影响[J]. 植物研究, 2023, 43(4): 572-581. |
[3] | 廖诗贤, 王宇婷, 董立本, 顾咏梅, 贾丰璘, 姜廷波, 周博如. 小黑杨转录因子PsnbZIP1应答盐胁迫功能分析[J]. 植物研究, 2023, 43(2): 288-299. |
[4] | 刘森尧, 贾丰璘, 国庆, 樊高锋, 周博如, 姜廷波. 小黑杨转录因子PsnbHLH162基因在盐和低温胁迫下应答分析[J]. 植物研究, 2023, 43(2): 300-310. |
[5] | 黄安瀛, 夏德安, 张洋, 那冬晨, 燕青, 魏志刚. PtrWRKY51基因的克隆及抗旱表达特性分析[J]. 植物研究, 2022, 42(6): 1005-1013. |
[6] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StCRKs基因家族的鉴定分析及响应逆境信号的表达[J]. 植物研究, 2022, 42(6): 1033-1043. |
[7] | 岳莉然, 刘颖婕, 刘晨旭, 周蕴薇. 响应盐胁迫调控的露地菊miR398a的克隆及功能研究[J]. 植物研究, 2022, 42(6): 986-996. |
[8] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StNPR4基因的克隆与功能分析[J]. 植物研究, 2022, 42(5): 821-829. |
[9] | 王雪莹, 王瑞琪, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨CNGC家族全基因组鉴定及胁迫响应分析[J]. 植物研究, 2022, 42(4): 613-625. |
[10] | 陈娇娆, 续旭, 胡章立, 杨爽. 植物感受盐胁迫及相关钙信号的研究进展[J]. 植物研究, 2022, 42(4): 713-720. |
[11] | 杨宇宁, 董昊, 董实伟, 王乃锐, 宋跃, 张含国, 李淑娟. 长白落叶松转录因子LobHLH34克隆及表达分析[J]. 植物研究, 2022, 42(1): 112-120. |
[12] | 赵佳明, 樊二勤, 刘轶, 王智, 王军辉, 曲冠证. 楸树CbuATX1,CbuATX1-like和CbuATX2基因克隆及生物信息学分析[J]. 植物研究, 2022, 42(1): 47-61. |
[13] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
[14] | 赵晓菊, 张奕婷, 刘佳, 刘洋, 唐中华. 一氧化氮参与盐胁迫下长春花酚类代谢的调控研究[J]. 植物研究, 2021, 41(4): 633-640. |
[15] | 彭淑萍, 董诚明, 朱畇昊. 响应内生菌侵染的两个地黄茉莉酸合成关键基因的克隆与表达分析[J]. 植物研究, 2021, 41(2): 294-301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||