植物研究 ›› 2023, Vol. 43 ›› Issue (1): 76-89.doi: 10.7525/j.issn.1673-5102.2023.01.009
刘建新(), 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜
收稿日期:
2022-02-17
出版日期:
2023-01-20
发布日期:
2022-12-23
通讯作者:
刘建新
E-mail:liujx1964@163.com
作者简介:
刘建新(1964—),男,教授,主要从事植物逆境生理研究。E-mail:liujx1964@163.com
基金资助:
Jianxin LIU(), Ruirui LIU, Xiuli LIU, Xiaobin OU, Haiyan JIA, Ting BU, Na LI
Received:
2022-02-17
Online:
2023-01-20
Published:
2022-12-23
Contact:
Jianxin LIU
E-mail:liujx1964@163.com
About author:
LIU Jianxin(1964—),male,professor,mainly engaged in the study of plant stress physiology.E-mail:liujx1964@163.com
Supported by:
摘要:
为探讨外源硫化氢(H2S)对盐碱胁迫下植物有机酸和激素水平的调控效应,以裸燕麦(Avena nuda)为材料,研究喷施50 μmol·L-1 H2S供体硫氢化钠(NaHS)溶液对3.00 g·kg-1盐碱胁迫下叶片有机酸、激素含量和产量性状的影响。结果表明:盐碱胁迫显著提高了琥珀酸、丁烯二酸、苹果酸、葡萄糖醛酸和总有机酸含量,显著降低了焦谷氨酸、茉莉酸-异亮氨酸(JA-Ile)、反式-玉米素(tZ)和N6-(Δ2-异戊烯)腺嘌呤(iP)含量。喷施NaHS溶液显著提高盐碱胁迫下裸燕麦叶片中3-羟基-3-甲基谷氨酸、吲哚乙酸(IAA)、赤霉素A7(GA7)、茉莉酸甲酯(MJA)、iP含量和IAA/ABA比值,显著降低葡萄糖醛酸、赤霉素A3(GA3)、赤霉素A4(GA4)、总赤霉素(GAS)、1-氨基环丙烷羧酸(ACC)含量和ACC/ABA比值,而对琥珀酸、丁烯二酸、苹果酸、柠檬酸、丙二酸、泛酸、烟酸、焦谷氨酸、辛二酸、苯丙酮酸、总有机酸、赤霉素A1(GA1)、茉莉酸(JA)、JA-Ile、脱落酸(ABA)、tZ、反式-玉米素核苷(tZR)、N6-(Δ2-异戊烯基)腺苷(iPA)、总茉莉酸类(JAs)、细胞分裂素(CTK)含量、GAs/ABA、JAs/ABA、CTK/ABA比值无显著影响。主成分分析表明,喷施NaHS溶液使盐碱胁迫下裸燕麦叶片中有机酸3-羟基-3-甲基谷氨酸和激素MJA、GA7、tZ、IAA含量分别显著上调14.31%和41.83%、50.00%、22.97%、13.02%;而有机酸烟酸、葡萄糖醛酸和激素GA4、ACC、tZR、GA3含量分别显著下调16.00%、23.87%和73.53%、32.72%、50.00%、33.91%。另外,喷施NaHS溶液使盐碱胁迫下裸燕麦千粒质量下降了5.91%,而穗数量、穗铃数量、穗粒数量和籽粒产量分别提高了2.19%、9.70%、61.60%和52.83%。表明外源H2S参与盐碱胁迫下裸燕麦有机酸和激素水平的调控,能够增强裸燕麦适应盐碱胁迫的能力。
中图分类号:
刘建新, 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦叶片有机酸和激素含量的影响[J]. 植物研究, 2023, 43(1): 76-89.
Jianxin LIU, Ruirui LIU, Xiuli LIU, Xiaobin OU, Haiyan JIA, Ting BU, Na LI. Effects of Exogenous Hydrogen Sulfide on Contents of Organic Acids and Hormones in Leaves of Avena nuda under Saline-Alkali Stress[J]. Bulletin of Botanical Research, 2023, 43(1): 76-89.
表1
外源硫化氢对盐碱胁迫下裸燕麦叶片有机酸含量的影响
有机酸 Organic acid | 有机酸质量分数 Content of organic acids /(μg·g-1) | |||
---|---|---|---|---|
CK | SA | SA+NaHS | NaHS | |
琥珀酸Succinic acid | 75.88±11.33bc | 88.33±4.46a | 83.06±9.55ab | 73.29±7.60c |
丁烯二酸Butenedioic acid | 32.44±5.28b | 40.36±7.71a | 44.44±6.70a | 38.66±2.83ab |
苹果酸Malic acid | 1 086.15±63.20b | 1 168.84±90.54a | 1 166.64±95.38a | 1 094.94±47.00ab |
柠檬酸Citric acid | 1 861.49±464.71a | 2 320.79±531.62a | 2 166.66±446.02a | 2 150.29±389.79a |
丙二酸Malonic acid | 26.94±5.00a | 31.88±6.41a | 28.43±5.20a | 31.47±3.81a |
葡萄糖醛酸Glucuronic acid | 30.95±6.21c | 59.70±12.39a | 45.45±6.80b | 45.72±6.43b |
泛酸Pantothenic acid | 1 014.42±102.74a | 1 093.14±195.54a | 1 069.82±84.66a | 1 134.46±103.36a |
烟酸Nicotinic acid | 2.96±0.62ab | 3.00±0.46ab | 2.52±0.24b | 3.23±0.57a |
焦谷氨酸Pyroglutamic acid | 15.99±1.49b | 12.53±2.00c | 11.45±2.21c | 19.10±4.65a |
辛二酸Suberic acid | 0.38±0.02b | 0.38±0.07b | 0.33±0.04b | 0.55±0.09a |
3-羟基-3-甲基谷氨酸3-Hydroxy-3-methylglutaric acid | 5.73±0.70ab | 5.38±0.39b | 6.15±0.49a | 6.02±0.92ab |
苯丙酮酸Phenylpyruvic acid | 2.62±0.33a | 3.06±0.64a | 3.12±0.44a | 2.85±0.50a |
总有机酸Total organic acids | 4 155.94±551.75b | 4 827.40±753.16a | 4 628.07±535.33ab | 4 600.58±441.97ab |
表2
外源硫化氢对盐碱胁迫下裸燕麦叶片激素含量的影响
激素 Hormone | 激素质量分数 Content of hormone /(ng·g-1) | |||
---|---|---|---|---|
CK | SA | SA+NaHS | NaHS | |
吲哚乙酸 Indole-3-acetic acid(IAA) | 1.471±0.240b | 1.651±0.198b | 1.866±0.177a | 1.788±0.314a |
赤霉素 A1 Gibberellin A1(GA1) | 0.068±0.010b | 0.079±0.009 b | 0.093±0.018b | 0.125±0.051a |
赤霉素 A3 Gibberellin A3(GA3) | 0.339±0.083bc | 0.404±0.080ab | 0.267±0.126c | 0.484±0.142a |
赤霉素 A4 Gibberellin A4(GA4) | 0.021±0.007ab | 0.034±0.023a | 0.009±0.007b | 0.009±0.005b |
赤霉素 A7 Gibberellin A7(GA7) | 0.009±0.004c | 0.012±0.004bc | 0.018±0.005a | 0.014±0.003ab |
茉莉酸 Jasmonic acid(JA) | 2.413±0.738ab | 2.509±0.907ab | 1.675±0.590b | 3.004±1.475a |
茉莉酸-异亮氨酸 Jasmonoyl-isoleucine(JA-Ile) | 1.850±0.542a | 1.447±0.320b | 1.423±0.254b | 2.212±0.570a |
茉莉酸甲酯 Methyl Jasmonate(MJA) | 0.589±0.204b | 0.887±0.176b | 1.258±0.348a | 1.237±0.407a |
脱落酸 Abscisic acid(ABA) | 7.699±1.220b | 6.695±0.626b | 6.211±1.106b | 9.760±2.070a |
反式-玉米素 Trans-Zeatin(tZ) | 0.318±0.038ab | 0.209±0.047c | 0.257±0.062bc | 0.385±0.098a |
反式-玉米素核苷 Trans-Zeatin-riboside(tZR) | 0.009±0.003a | 0.008±0.001ab | 0.004±0.006b | 0.011±0.004a |
N6-(Δ2-异戊烯)腺嘌呤 N6-(Δ2-Isopentenyl) adenine(iP) | 0.049±0.013a | 0.041±0.014b | 0.045±0.010a | 0.031±0.004b |
N6-(Δ2-异戊烯基)腺苷 N6-(Δ2-Isopentenyl) adenosine(iPA) | 0.068±0.017a | 0.079±0.021a | 0.060±0.027a | 0.078±0.013a |
油菜素内酯 Brassinolide | ND | ND | ND | ND |
1-氨基环丙烷羧酸 1-Aminocyclopropanecarboxylic acid(ACC) | 0.147±0.024b | 0.162±0.030ab | 0.109±0.030c | 0.183±0.038a |
表3
外源硫化氢对盐碱胁迫下裸燕麦叶片6类激素总量和总量比值的影响
激素 Hormone | CK | SA | SA+NaHS | NaHS |
---|---|---|---|---|
吲哚乙酸 Indole-3-acetic acid(IAA) /(ng·g-1) | 1.471±0.240b | 1.651±0.198b | 1.866±0.177a | 1.788±0.314a |
赤霉素类 Gibberellins(GAs) /(ng·g-1) | 0.438±0.088bc | 0.529±0.072ab | 0.387±0.123c | 0.632±0.115a |
茉莉酸类 Jasmonic acids (JAs) /(ng·g-1) | 4.853±0.950b | 4.843±0.866b | 4.356±0.894b | 6.453±1.930a |
脱落酸 Abscisic acid (ABA) /(ng·g-1) | 7.699±1.220b | 6.695±0.626b | 6.211±1.106b | 9.760±2.070a |
细胞分裂素 Cytokinin(CTK) /(ng·g-1) | 0.444±0.040ab | 0.337±0.052c | 0.374±0.071bc | 0.505±0.106 a |
1-氨基环丙烷羧酸 1-Aminocyclopropanecarboxylic acid(ACC) /(ng·g-1) | 0.147±0.024b | 0.162±0.030ab | 0.109±0.030c | 0.183±0.038a |
IAA/ABA | 0.196±0.047b | 0.249±0.038b | 0.309±0.065a | 0.193±0.060b |
GAs/ABA | 0.058±0.015a | 0.080±0.017a | 0.064±0.024a | 0.070±0.028a |
JAs/ABA | 0.635±0.118a | 0.729±0.148a | 0.714±0.150a | 0.717±0.351a |
CTK/ABA | 0.060±0.014a | 0.051±0.013a | 0.062±0.013a | 0.056±0.023a |
ACC/ABA | 0.020±0.006ab | 0.024±0.005a | 0.018±0.004b | 0.020±0.006ab |
表4
外源硫化氢对盐碱胁迫下裸燕麦产量构成因素的影响
处理 Treatment | 穗数量 /(穗) Spike number | 穗铃数量 /(铃) Spike boll number | 穗粒数量 /(粒) Spike grain number | 千粒质量 1 000 grains weigh /g | 籽粒产量 Grain yield /g |
---|---|---|---|---|---|
CK | 158.4±12.2a | 2234.2±771.9a | 2834.0±861.7a | 15.62±0.76a | 44.70±9.99a |
SA | 146.4±35.2a | 1910.0±502.3a | 1574.4±454.6b | 15.22±2.16a | 25.23±4.64b |
SA+NaHS | 149.6±27.1a | 2095.2±524.6a | 2544.2±704.4a | 14.32±0.52a | 38.56±9.56a |
NaHS | 161.0±42.4a | 2638.0±391.5a | 3620.0±1093.6a | 13.76±1.15a | 47.79±4.63a |
表5
裸燕麦有机酸、激素含量与产量性状的关联度和关联序
指标 Index | 关联度 Correlation coefficient | 关联序 Correlation order | 指标 Index | 关联度 Correlation coefficient | 关联序 Correlation order |
---|---|---|---|---|---|
琥珀酸 Succinic acid | 0.660 | 26 | 赤霉素A1 Gibberellin A1 | 0.727 | 10 |
丁烯二酸 Butenedioic acid | 0.685 | 22 | 赤霉素A3 Gibberellin A3 | 0.715 | 13 |
苹果酸 Malic acid | 0.710 | 15 | 赤霉素A4 Gibberellin A4 | 0.703 | 16 |
柠檬酸 Citric acid | 0.695 | 20 | 赤霉素A7 Gibberellin A7 | 0.679 | 23 |
丙二酸 Malonic acid | 0.736 | 7 | 茉莉酸 Jasmonic acid | 0.728 | 9 |
葡萄糖醛酸 Glucuronic acid | 0.670 | 25 | 茉莉酸-异亮氨酸 Jasmonoyl-isoleucine | 0.739 | 5 |
泛酸 Pantothenic acid | 0.723 | 12 | 茉莉酸甲酯 Methyl Jasmonate | 0.698 | 17 |
烟酸 Nicotinic acid | 0.741 | 4 | 脱落酸 Abscisic acid | 0.747 | 3 |
焦谷氨酸 Pyroglutamic acid | 0.776 | 1 | 反式-玉米素 Trans-Zeatin | 0.770 | 2 |
辛二酸 Suberic acid | 0.737 | 6 | 反式-玉米素核苷 Trans-Zeatin-riboside | 0.733 | 8 |
3-羟基-3-甲基谷氨酸 3-Hydroxy-3-methylglutaric acid | 0.723 | 11 | N6-(Δ2-异戊烯)腺嘌呤 N6-(Δ2-Isopentenyl) adenine | 0.672 | 24 |
苯丙酮酸 Phenylpyruvic acid | 0.714 | 14 | N6-(Δ2-异戊烯基)腺苷 N6-(Δ2-Isopentenyl) adenosine | 0.698 | 18 |
吲哚乙酸 Indole-3-acetic acid | 0.696 | 19 | 1-氨基环丙烷羧酸 1-Aminocyclopropanecarboxylic acid | 0.690 | 21 |
1 | 张毅,石玉,胡晓辉,等.外源Spd对盐碱胁迫下番茄幼苗氮代谢及主要矿质元素含量的影响[J].应用生态学报,2013,24(5):1401-1408. |
ZHANG Y, SHI Y, HU X H,et al.Effects of exogenous spermidine on the nitrogen metabolism and main mineral elements contents of tomato seedlings under saline-alkali stress [J].Chinese Journal of Applied Ecology,2013,24(5):1401-1408. | |
2 | 付寅生,崔继哲,陈广东,等.盐碱胁迫下碱地肤Na+/H+逆向转运蛋白基因KsNHX1表达分析[J].应用生态学报,2012,23(6):1629-1634. |
FU Y S, CUI J Z, CHEN G D,et al.Expression of Na+/H+ antiporter gene KsNHX1 in Kochia sieversiana under saline-alkali stress [J].Chinese Journal of Applied Ecology,2012,23(6):1629-1634. | |
3 | 闫永庆,王文杰,朱虹,等.混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响[J].应用生态学报,2009,20(9):2085-2091. |
YAN Y Q, WANG W J, ZHU H,et al.Effects of salt-alkali stress on osmoregulation substance and active oxygen metabolism of Qingshan poplar(Populus pseudo-cathayana×P.deltoides)[J].Chinese Journal of Applied Ecology,2009,20(9):2085-2091. | |
4 | 刘建新,刘瑞瑞,贾海燕,等.外源H2S对盐碱胁迫下裸燕麦幼苗叶片渗透胁迫的调节作用[J].生态学杂志,2020,39(12):3989-3997. |
LIU J X, LIU R R, JIA H Y,et al.Regulation of exogenous hydrogen sulfide on osmotic stress in leaves of naked oat seedlings under saline-alkali mixed stress[J].Chinese Journal of Ecology,2020,39(12):3989-3997. | |
5 | 杨国会.碱胁迫诱导小冰麦有机酸积累和分泌的研究[J].西北农林科技大学学报(自然科学版),2010,38(7):77-84. |
YANG G H.Study on organic acids accumulation and secretion of alkali stress induced in wheat-wheatgrass[J].Journal of Northwest A & F University(Natural Science Edition),2010,38(7):77-84. | |
6 | GUO L Q, SHI D C, WANG D L.The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflorais the accumulation of large quantities of organic acids and into therhyzosphere[J].Journal of Agronomy and Crop Science,2010,196(2):123-135. |
7 | 胡妮,陈柯罕,李取生,等.盐胁迫下苋菜品种有机酸变化对Cd累积和耐盐性的影响[J].农业环境科学学报,2016,35(5):858-864. |
HU N, CHEN K H, LI Q S,et al.Effects of salinity-inducted organic acid variation on Cd accumulation and salinity tolerance of edible amaranth[J].Journal of Agro-Environment Science,2016,35(5):858-864. | |
8 | GONG B, WEN D,BLOSZIESS,et al.Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism,antioxidant system,nutritional status,and organic acid metabolism in tomato roots[J].Acta Physiologiae Plantarum,2014,36(8):2167-2181. |
9 | 郭立泉,陈建欣,崔景军,等.盐、碱胁迫下星星草有机酸代谢调节的比较研究[J].东北师大学报(自然科学版),2009,41(4):123-128. |
GUO L Q, CHEN J X, CUI J J,et al.Comparative studies of metabolic regulation of organic acids in Puccinellia tenuiflora under salt and alkali stresses[J].Journal of Northeast Normal University(Natural Science Edition),2009,41(4):123-128. | |
10 | PATEL S,ADBHAIA, KARMAKAR N.Ionic balance of sugar beet(Beta vulgaris L.) under salinity stress with special reference to organic acids and antioxidant system[J].Indian Journal of Agricultural Biochemistry,2017,30(1):73-79. |
11 | 麻莹,郭立泉,张淑芳,等.盐碱胁迫下抗碱牧草碱地肤溶质积累、分布特点及有机酸的生理贡献[J].草业学报,2013,22(1):193-200. |
MA Y, GUO L Q, ZHANG S F,et al.Solute accumulation and distribution traits of an alkali resistant forage plant Kochia sieversiana and physiological contribution of organic acid under salt and alkali stresses[J].Acta Prataculturae Sinica,2013,22(1):193-200. | |
12 | 郭志刚,李文芳,毛娟,等.钾肥施用对元帅苹果果实内源激素含量及酸代谢的影响[J].农业工程学报,2019,35(10):281-290. |
GUO Z G, LI W F, MAO J,et al.Effects of potassium fertilizer on endogenous hormone content and acid metabolism in fruit of apple cv.‘Red Delicious’[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(10):281-290. | |
13 | 张敏,蔡瑞国,李慧芝,等.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J].生态学报,2008,28(1):310-320. |
ZHANG M, CAI R G, LI H Z,et al.Responses of seedling growth and endogenous hormone contents in different wheat cultivars to salt stress[J].Acta Ecologica Sinica,2008,28(1):310-320. | |
14 | TUNA A L, KAYA C, DIKILITAS M,et al.The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities,plant growth parameters and nutritional status in maize plants[J].Environmental and Experimental Botany,2008,62(1):1-9. |
15 | 王鑫,刘丹,陈婧婷,等.外源BR对盐碱胁迫下甜菜内源激素含量及保护酶活性的影响[J].西北农林科技大学学报(自然科学版),2021,49(7):20-30,41. |
WANG X, LIU D, CHEN J T,et al.Effects of exogenous BR on endogenous hormone and protective enzyme activities in sugar beet under saline-alkali stress[J].Journal of Northwest A & F University(Natural Science Edition),2021,49(7):20-30,41. | |
16 | ZHANG J H, JIA W S, YANG J C,et al.Role of ABA in integrating plant responses to drought and salt stresses[J].Field Crops Research,2006,97(1):111-119. |
17 | CACHORRO P, MARTÍNEZ R, ORTIZ A,et al.Abscisic acid and osmotic relations in Phaseolus vulgaris L.shoots under salt stress[J].Journal of Plant Growth Regulation,1995,14(2):99-104. |
18 | FORMENTIN E, BARIZZA E, STEVANATO P,et al.Fast regulation of hormone metabolism contributes to salt tolerance in rice(Oryza sativa spp. japonica,L.) by inducing specific morpho-physiological responses[J].Plants-Basel,2018,7(3):75.. |
19 | JIN Z P, PEI Y X.Physiological implications of hydrogen sulfide in plants:pleasant exploration behind its unpleasant odour[J].Oxidative Medicine and Cellular Longevity,2015,2015:397502. |
20 | MOSTOFA M G, SAEGUSA D, FUJITA M,et al.Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance,mineral homeostasis and oxidative metabolism under excessive salt stress[J].Frontiers in Plant Science,2015,6:1055. |
21 | CHEN J, WANG W H, WU F H,et al.Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots[J].Scientific Reports,2015,5:12516. |
22 | 黄菡,郭莎莎,陈良超,等.外源硫化氢对盐胁迫下茶树抗氧化特性的影响[J].植物生理学报,2017,53(3):497-504. |
HUANG H, GUO S S, CHEN L C,et al.Effects of exogenous hydrogen sulfide on the antioxidant characteristics of tea plant(Camellia sinensis) under salt stress[J].Plant Physiology Journal,2017,53(3):497-504. | |
23 | SHAN C, LIU H, ZHAO L,et al.Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress[J].Biologia Plantarum,2014,58(1):169-173. |
24 | 刘建新,刘瑞瑞,刘秀丽,等.不同时期喷施NaHS对盐碱胁迫下裸燕麦叶片渗透调节物质和抗氧化活性的影响[J].生态学杂志,2021,40(11):3620-3632. |
LIU J X, LIU R R, LIU X L,et al.Effects of spraying NaHS at different growth stages on osmotic adjustment substance and antioxidant activity in leaves of naked oat under saline-alkali stress[J].Chinese Journal of Ecology,2021,40(11):3620-3632. | |
25 | MICEK P, KULIG B, WOŹNICA P,et al.The nutritive value for ruminants of faba bean(Vicia faba) seeds and naked oat(Avena nuda) grain cultivated in an organic farming system[J].Journal of Animal and Feed Sciences,2012,21(4):773-786. |
26 | 张达斌,黄文凤,惠蕾,等.PEG胁迫下旱地油菜绿肥苗期抗旱性筛选和评价[J].植物营养与肥料学报,2022,28(1):168-180. |
ZHANG D B, HUANG W F, HUI L,et al.Evaluation of drought resistance of Brassica green manure crops using seedling growth indices[J].Journal of Plant Nutrition and Fertilizers,2022,28(1):168-180. | |
27 | 贲蓓倍,徐维红,邹德玉,等.不同施肥条件下的小麦籽粒代谢组学研究[J].麦类作物学报,2021,41(2):212-219. |
BEN B B, XU W H, ZOU D Y,et al.Study on metabonomics of wheat grain under different fertilization conditions[J].Journal of Triticeae Crops,2021,41(2):212-219. | |
28 | 高双红,李媛英,刘博文,等.H2S对弱光胁迫下高羊茅幼苗生理特性和内源激素的影响[J].草地学报,2021,29(10):2233–2239. |
GAO S H, LI Y Y, LIU B W,et al.Effects of H2S on physiological characteristics and endogenous hormones in tall fescue seedlings under low-light stress[J].Acta Agrestia Sinica,2021,29(10):2233-2239. | |
29 | CHEN P, YANG W X, MIN X W,et al.Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity[J].Plant Physiology and Biochemistry,2021,167:738-747. |
30 | DING H N, MA D Y, HUANG X,et al.Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings[J].Acta Physiologiae Plantarum,2019,41(7):1-11. |
31 | DENG Y Q, BAO J, YUAN F,et al.Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content[J].Plant Growth Regulation,2016,79(3):391-399. |
32 | LI J S, JIA H L, WANG J,et al.Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root[J].Protoplasma,2014,251(4):899-912. |
33 | MÜLLER R, SISLER E C, SEREK M.Stress induced ethylene production,ethylene binding,and the response to the ethylene action inhibitor 1-MCP in miniature roses[J].Scientia Horticulturae,2000,83(1):51-59. |
34 | ALI M S, BAEK K H.Jasmonic acid signaling pathway in response to abiotic stresses in plants[J].International Journal of Molecular Sciences,2020,21(2):621-639. |
35 | ZHOU H, CHEN Y, ZHAI F C,et al.Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling[J].Plant Physiology and Biochemistry,2020,155:213-220. |
36 | 姚曼红,刘琳,曾幼玲.五大类传统植物激素对植物响应盐胁迫的调控[J].生物技术通报,2011(11):1-5,25. |
YAO M H, LIU L, ZENG Y L.Several kinds of phytohormone in plants responses to salt-stress[J].Biotechnology Bulletin,2011(11):1-5,25. | |
37 | CHANG C S, WANG B L, SHI L,et al.Alleviation of salt stress-induced inhibition of seed germination in cucumber(Cucumis sativus L.) by ethylene and glutamate[J].Journal of Plant Physiology,2010,167(14):1152-1156. |
38 | 刘海英,崔长海,赵倩,等.施用有机肥环境下盐胁迫小麦幼苗长势和内源激素的变化[J].生态学报,2011,31(15):4215-4224. |
LIU H Y, CUI C H, ZHAO Q,et al.Effects of organic fertilizer on growth and endogenous hormone contents of wheat seedlings under salt stress[J].Acta Ecologica Sinica,2011,31(15):4215-4224. | |
39 | 张丽,贾志国,马庆华,等.盐碱胁迫对平欧杂种榛生长及叶片内源激素含量的影响[J].林业科学研究,2015,28(3):394-401. |
ZHANG L, JIA Z G, MA Q H,et al.Effects of saline-alkali stresses on the growth and endogenous hormone contents in leaves of hybrid hazelnut Liaozhen 3[J].Forest Research,2015,28(3):394-401. | |
40 | ACHARD P, CHENG H, DE GRAUWE L,et al.Integration of plant responses to environmentally activated phytohormonal signals[J].Science,2006,311(5757):91-94. |
41 | ŠVEIKAUSKAS V, BAREIKIENÉ N, JANČYS Z.Energy-dependent auxin transport through the plasmalemma:the role of H+-ATPase[J].Biologija,2003,3:60-62. |
[1] | 庄舒尧, 许恒博, 胡骁彧, 戴上, 张彦妮. 盐碱胁迫对彩叶矾根‘银扇’幼苗生长和生理特性的影响[J]. 植物研究, 2023, 43(4): 520-530. |
[2] | 孙宇, 张艺腾, 成慧慧. 紫穗槐WRKY42基因耐盐碱性的功能研究[J]. 植物研究, 2023, 43(4): 612-621. |
[3] | 裘喻平, 王益川, 郭红卫. 植物根毛发育调控机制的研究进展[J]. 植物研究, 2023, 43(3): 321-332. |
[4] | 矫春晶, 李明月, 张鹏. 外源激素浸种与渗透处理对水曲柳种子热休眠的作用[J]. 植物研究, 2023, 43(3): 370-378. |
[5] | 宋海云, 张涛, 贺鹏, 郑树芳, 王立丰, 王文林. 澳洲坚果MibZIP1基因克隆及表达规律分析[J]. 植物研究, 2023, 43(1): 131-139. |
[6] | 覃碧, 王肖肖, 杨玉双, 聂秋海, 陈秋惠, 刘实忠. 橡胶草TkAPC10基因的鉴定及其表达模式分析[J]. 植物研究, 2022, 42(5): 830-839. |
[7] | 陈坤, 方功桂, 穆怀志, 姜静. 白桦BpPIN3基因启动子序列及应答特性分析[J]. 植物研究, 2022, 42(4): 592-601. |
[8] | 潘立本, 闫雪, 刘佳, 吴可心, 刘洋, 刘少冲. 东北林下早春植物开花的生理特征研究[J]. 植物研究, 2022, 42(4): 657-666. |
[9] | 黄东梅, 陈颖, 白露, 倪迪安, 徐奕扬, 张志国, 秦巧平. 萱草叶片响应低温胁迫的转录组分析[J]. 植物研究, 2022, 42(3): 424-436. |
[10] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 不同时期喷施NaHS对盐碱胁迫下裸燕麦H2S产生和活性氧代谢的影响[J]. 植物研究, 2022, 42(3): 455-465. |
[11] | 刘国彬, 廖婷, 王烨, 郭丽琴, 赵今哲, 姚砚武, 曹均. 金塔柏扦插不定根形成与内源激素的调控研究[J]. 植物研究, 2022, 42(2): 278-288. |
[12] | 张玉琦, 苏欣, 尤志强, 富金博, 詹亚光, 尹静. 不同激素处理对白桦幼树萌条及三萜合成的影响[J]. 植物研究, 2022, 42(2): 289-298. |
[13] | 杨蕴力, 渠畅, 王阳, 刘桂丰, 姜静. 白桦BpPIN5基因启动子组织定位及外源激素应答分析[J]. 植物研究, 2022, 42(1): 104-111. |
[14] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源H2S供体NaHS浸种对盐碱胁迫下裸燕麦种子萌发特性的影响[J]. 植物研究, 2021, 41(6): 870-877. |
[15] | 张博超, 王佳琳, 殷缘, 车易达, 邓俊杰, 张荣沭. 山新杨PdPapWRKY51基因在胁迫条件下的组织表达模式[J]. 植物研究, 2021, 41(6): 911-920. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||