植物研究 ›› 2022, Vol. 42 ›› Issue (4): 602-612.doi: 10.7525/j.issn.1673-5102.2022.04.010
张雨1,2, 苏旭1,2,3, 刘玉萍1,2(), 刘涛1,2, 郑长远1,2, 苏丹丹1,2, 王亚男1,2, 吕婷1,2
收稿日期:
2021-07-21
出版日期:
2022-07-20
发布日期:
2022-07-15
通讯作者:
刘玉萍
E-mail:lyp8527970@126.com
作者简介:
张雨(1998—),女,硕士研究生,主要从事高山植物遗传多样性与系统进化方向研究。
基金资助:
Yu ZHANG1,2, Xu SU1,2,3, Yuping LIU1,2(), Tao LIU1,2, Changyuan ZHENG1,2, Dandan SU1,2, Yanan WANG1,2, Ting LÜ1,2
Received:
2021-07-21
Online:
2022-07-20
Published:
2022-07-15
Contact:
Yuping LIU
E-mail:lyp8527970@126.com
About author:
ZHANG Yu(1998—),female,postgraduate,mainly engaged in the study of genetic diversity and systematic evolution of alpine plants.
Supported by:
摘要:
以青藏高原特有药用植物——喜马红景天(Rhodiola himalensis)为试验材料,利用高通量测序技术对喜马红景天进行叶绿体基因组测序、组装和注释,获得完整的叶绿体基因组。结果显示:喜马红景天叶绿体基因组全长为151 074 bp,GC含量为37.8%,具有1个长单拷贝区、1个短单拷贝区和1对反向重复区的典型四分体结构,其序列长度分别为82 309、17 017、25 874 bp;叶绿体基因组共编码130个基因,其中编码蛋白的基因86个、编码tRNA的基因37个、编码rRNA的基因7个;叶绿体基因组共检测出25 513个密码子,其中编码亮氨酸(Leu)的密码子占比最大;喜马红景天IRa和IRb区的rps19和ycf1基因缺失,长单拷贝区的trnH基因收缩;喜马红景天与圣地红景天(R. sacra)亲缘关系最近;短单拷贝区域的单核苷酸多态性(SNP)变异频率最高。本研究报道了喜马红景天的叶绿体基因组,并对其进行了组装、注释和序列分析,为今后开展喜马红景天的遗传多样性研究和合理开发利用提供理论依据。
中图分类号:
张雨, 苏旭, 刘玉萍, 刘涛, 郑长远, 苏丹丹, 王亚男, 吕婷. 喜马红景天叶绿体基因组特征及其系统发育分析[J]. 植物研究, 2022, 42(4): 602-612.
Yu ZHANG, Xu SU, Yuping LIU, Tao LIU, Changyuan ZHENG, Dandan SU, Yanan WANG, Ting LÜ. Characteristics of Complete Chloroplast Genome and Phylogenetic Analysis of Rhodiola himalensis (Crassulaceae)[J]. Bulletin of Botanical Research, 2022, 42(4): 602-612.
表2
喜马红景天叶绿体基因组注释信息
基因类别 Gene category | 基因分组 Gene group | 基因名称 Gene name |
---|---|---|
光合作用基因 Genes for photosynthesis | 光系统 Ⅰ 亚基 Subunits of photosystem Ⅰ | psaA、psaB、psaC、psaI、psaJ |
光系统 Ⅱ 亚基 Subunits of photosystem Ⅱ | psbA、psbB、psbC、psbD、psbE、psbF、psbH、psbI、psbJ、 psbK、psbL、psbM、psbN、psbT、psbZ | |
细胞色素b/f复合体亚基 Subunit of cytochrome b/f complex | PetA、petBa 、petDa 、petG、petL、petN | |
ATP合成酶亚基 Subunits of ATP synthase | atpA、atpB、atpE、atpFa、atpH、atpI | |
NADH脱氢酶亚基 Subunits of NADH dehydrogenase | ndhAa、ndhBac、ndhC、ndhD、ndhE、ndhF、ndhG、 ndhH、ndhI、ndhG、ndhK | |
二磷酸核酮糖羧化酶大亚基 Large subunit of Rubisco | rbcL | |
ATP依赖蛋白酶亚基P基因 ATP-dependent protease subunit P | clpPb | |
自我复制基因 Self replication | DNA依赖性RNA聚合酶 DNA dependent RNA polymerase | rpoA、rpoB、rpoC1a、rpoC2 |
核糖体小亚基 Small subunit of ribosome | rps2、rps3、rps4、rps7c、rps8、rps11、rps12d*、rps14、 rps15、rps16a、rps18、rps19 | |
核糖体大亚基 Large subunit of ribosome | rpl2ac、rpl14、rpl16、rpl20、rpl22、rpl23c、rpl32、 rpl33、rpl36 | |
转运RNA Transfer RNA gene | trnA-UGCac、trnC-GCA、trnD-GUC、trnE-UUC、trnF-GAA、trnG-GCC、trnG-UCC、trnH-GUG、trnI-CAUc、trnI-GAUac、trnK-UUUa、trnL-CAAc、trnL-UAAa、trnL-UAG、trnM-CAU、trnN-GUUc、trnP-UGG、trnQ-UUG、trnR-ACGc、trnR-UCU、trnS-GCU、trnS-GGA、trnS-UGA、trnT-GGU、trnT-UGU、trnV-GACc、trnV-UACa、trnW-CCA、trnY-GUA、trnfM-CAU | |
核糖体RNA Ribosomal RNA gene | rrn4.5c、rrn5c、rrn16c、rrn23 | |
翻译起始因子 Translation initiation factor | infA | |
其他基因 Other genes | 成熟酶 Maturase | matK |
包膜蛋白 Envelop membrane protein | cemA | |
c型细胞色素合成基因 c-type cytochrome synthesis gene | ccsA | |
乙酰辅酶A羧化酶亚基 Submit of acetyl-CoA-carboxylase | accD | |
未知功能基因 Genes of unknown function | 开放阅读框 Conserved open reading frame | ycf1、ycf2c、ycf3b、ycf4 |
表3
喜马红景天各氨基酸相对同义密码子使用度
氨基酸 Amino acid | 密码子 Codon | 数量 Number | RSCU | 使用频率 Ratio /% | 氨基酸 Amino acid | 密码子 Codon | 数量 Number | RSCU | 使用频率 Ratio /% |
---|---|---|---|---|---|---|---|---|---|
Phe | UUU | 956 | 1.33 | 5.62 | Ala | GCU | 603 | 1.79 | 5.27 |
UUC | 477 | 0.67 | GCC | 202 | 0.60 | ||||
Leu | UUA | 869 | 1.92 | 10.67 | GCA | 401 | 1.19 | ||
UUG | 531 | 1.17 | GCG | 139 | 0.41 | ||||
CUU | 591 | 1.30 | TER* | UAA | 39 | 1.70 | 0.27 | ||
CUC | 171 | 0.38 | UAG | 16 | 0.70 | ||||
CUA | 390 | 0.86 | UGA | 14 | 0.61 | ||||
CUG | 169 | 0.37 | His | CAU | 484 | 1.53 | 2.48 | ||
Ile | AUU | 1 043 | 1.46 | 8.43 | CAC | 149 | 0.47 | ||
AUC | 425 | 0.59 | Gln | CAA | 696 | 1.54 | 3.55 | ||
AUA | 682 | 0.95 | CAG | 210 | 0.46 | ||||
Met | AUG | 613 | 1.00 | 2.40 | Asn | AAU | 937 | 1.51 | 4.86 |
Val | GUU | 520 | 1.51 | 5.39 | AAC | 302 | 0.49 | ||
GUC | 162 | 0.47 | Lys | AAA | 1 044 | 1.51 | 5.41 | ||
GUA | 505 | 1.47 | AAG | 335 | 0.49 | ||||
GUG | 187 | 0.54 | Asp | GAU | 835 | 1.59 | 4.11 | ||
Ser | UCU | 559 | 1.68 | 7.81 | GAC | 214 | 0.41 | ||
UCC | 316 | 0.95 | Glu | GAA | 1 014 | 1.51 | 5.27 | ||
UCA | 402 | 1.21 | GAG | 330 | 0.49 | ||||
UCG | 193 | 0.58 | Cys | UGU | 211 | 1.45 | 1.14 | ||
AGU | 403 | 1.21 | UGC | 81 | 0.55 | ||||
AGC | 119 | 0.36 | Trp | UGG | 450 | 1.00 | 1.76 | ||
Pro | CCU | 403 | 1.53 | 4.13 | Arg | CGU | 344 | 1.37 | 5.92 |
CCC | 212 | 0.81 | CGC | 91 | 0.36 | ||||
CCA | 290 | 1.10 | CGA | 355 | 1.41 | ||||
CCG | 148 | 0.56 | CGG | 110 | 0.44 | ||||
Thr | ACU | 549 | 1.71 | 5.02 | AGA | 447 | 1.77 | ||
ACC | 212 | 0.66 | AGG | 164 | 0.65 | ||||
ACA | 386 | 1.20 | Gly | GGU | 579 | 1.33 | 6.84 | ||
ACG | 135 | 0.42 | GGC | 162 | 0.37 | ||||
Tyr | UAU | 762 | 1.64 | 3.65 | GGA | 699 | 1.60 | ||
UAC | 170 | 0.36 | GGG | 306 | 0.70 |
表5
喜马红景天叶绿体基因组SSR信息
编号 No. | SSR类型 SSR type | SSR | 大小 Size | 起始 Start | 终止 End | 位置 Location |
---|---|---|---|---|---|---|
1 | P1 | T(11) | 11 | 2 159 | 2 169 | CDS(matK) |
2 | P1 | T(10) | 10 | 3 762 | 3 771 | Intron(trnK-UUU) |
3 | P1 | (A)10 | 10 | 5 231 | 5 240 | Intron(rps16) |
4 | P1 | A(11) | 11 | 7 536 | 7 546 | IGS |
5 | P1 | (T)12 | 12 | 8 161 | 8 172 | IGS |
6 | P1 | (T)15 | 15 | 9 137 | 9 151 | Intron(trnG-GCC) |
7 | C | (TA)7ttatatattaatatatttctatttaatatatatagatt(TA)12 | 76 | 9 369 | 9 444 | IGS |
8 | P1 | (T)10 | 10 | 12 061 | 12 070 | CDS(atpF) |
9 | P1 | (A)12 | 12 | 15 624 | 15 635 | IGS |
10 | P1 | (T)11 | 11 | 17 841 | 17 851 | CDS(rpoC2) |
11 | P1 | (T)11 | 11 | 22 005 | 22 015 | CDS(rpoC1) |
12 | P1 | (T)10 | 10 | 26 932 | 26 941 | IGS |
13 | P1 | (A)14 | 14 | 27 103 | 27 116 | IGS |
14 | P1 | (T)11 | 11 | 29 349 | 29 359 | IGS |
15 | P1 | (A)10 | 10 | 31 963 | 31 972 | IGS |
16 | P1 | (T)12 | 12 | 32 262 | 32 273 | IGS |
17 | P1 | (A)11 | 11 | 36 504 | 36 514 | IGS |
18 | P1 | (A)12 | 12 | 57 371 | 57 382 | CDS(accD) |
19 | P2 | (TA)6 | 12 | 57 830 | 57 841 | IGS |
20 | P1 | (A)10 | 10 | 58 230 | 58 239 | IGS |
21 | P1 | (T)11 | 11 | 59 093 | 59 103 | IGS |
22 | P1 | (A)11 | 11 | 61 422 | 61 432 | IGS |
23 | P1 | (T)11 | 11 | 64 766 | 64 776 | IGS |
24 | P1 | (T)10 | 10 | 65 122 | 65 131 | IGS |
25 | P1 | (T)11 | 11 | 65 794 | 65 804 | IGS |
26 | P1 | (A)10 | 10 | 73 561 | 73 570 | Intron(petB) |
27 | P1 | (A)10 | 10 | 79 265 | 79 274 | IGS |
28 | P1 | (T)12 | 12 | 80 743 | 80 754 | Intron(rpl16) |
29 | P1 | (T)12 | 12 | 81 664 | 81 675 | IGS |
30 | P1 | (T)10 | 10 | 100 712 | 100 721 | Intron(trnI-GAU) |
31 | P1 | (A)10 | 10 | 108 440 | 108 449 | CDS(ndhF) |
32 | P1 | (T)12 | 12 | 108 910 | 108 921 | CDS(ndhF) |
33 | P1 | (A)10 | 10 | 112 719 | 112 728 | IGS |
34 | P1 | (A)10 | 10 | 114 523 | 114 532 | IGS |
35 | P1 | (T)10 | 10 | 116 247 | 116 256 | CDS(ndhG) |
36 | P2 | (AT)7 | 14 | 117 832 | 117 845 | Intron(ndhA) |
37 | P1 | (A)10 | 10 | 122 439 | 122 448 | CDS(ycf1) |
38 | C | (T)14gattcaaaatcaaaaaaaagttgtcccttgatccttattatattaataactaggacgatagcaatgtatattctttc(A)11 | 102 | 123 070 | 123 171 | CDS(ycf1) |
39 | P1 | (A)11 | 11 | 123 629 | 123 639 | CDS(ycf1) |
40 | P1 | (T)10 | 10 | 123 763 | 123 772 | CDS(ycf1 |
41 | P1 | (A)11 | 11 | 125 092 | 125 102 | CDS(ycf1) |
42 | P1 | (A)10 | 10 | 132 664 | 132 673 | Intron(trnI-GAU) |
1 | 宋菊,龙月红,林丽梅,等.五加科植物叶绿体基因组结构与进化分析[J].中草药,2017,48(24):5070-5075. |
SONG J, LONG Y H, LIN L M,et al.Analysis on structure and phylogeny of chloroplast genomes in Araliaceae species[J].Chinese Traditional and Herbal Drugs,2017,48(24):5070-5075. | |
2 | JANSEN R K, RAUBESON L A, BOORE J L,et al.Methods for obtaining and analyzing whole chloroplast genome sequences[J].Methods in Enzymology,2005,395:348-384. |
3 | LESEBERG C H, DUVALL M R.The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals[J].Journal of Molecular Evolution,2009,69(4):311-318. |
4 | 焦凯丽,郑凯欣,朱宇佳,等.茄科植物叶绿体基因组研究进展[J].杭州师范大学学报(自然科学版),2019,18(2):160-167. |
JIAO K L, ZHENG K X, ZHU Y J,et al.Advances in chloroplast genome research of Solanaceae plants[J].Journal of Hangzhou Normal University(Natural Science Edition),2019,18(2):160-167. | |
5 | GUI L J, JIANG S F, XIE D F,et al.Analysis of complete chloroplast genomes of Curcuma and the contribution to phylogeny and adaptive evolution[J].Gene,2020,732:144355. |
6 | ZENG S Y, ZHAO J H, HAN K,et al.Complete chloroplast genome sequences of Rehmannia chingii,an endemic and endangered herb[J].Conservation Genetics Resources,2016,8(4):407-409. |
7 | RAMAN G, PARK K T, KIM J H,et al.Characteristics of the completed chloroplast genome sequence of Xanthium spinosum:comparative analyses,identification of mutational hotspots and phylogenetic implications[J].BMC Genomics,2020,21(1):855. |
8 | XING Y P, XU L, CHEN S Y,et al.Comparative analysis of complete chloroplast genomes sequences of Arctium lappa and A.tomentosum [J].Biologia Plantarum,2019,63(1):565-574. |
9 | ZHAO D N, ZHANG J Q.Characterization of the complete chloroplast genome of the traditional medicinal plants Rhodiola rosea(Saxifragales:Crassulaceae)[J].Mitochondrial DNA Part B,2018,3(2):753-754. |
10 | ZHAO K H, XU Y J, LU Y Z,et al.The complete chloroplast genome sequence of Rhodiola kirilowii(Crassulaceae),a precious Tibetan drug in China[J].Mitochondrial DNA Part B,2020,5(3):3128-3129. |
11 | 中国科学院中国植物志编辑委员会.中国植物志:第40卷[M].北京:科学出版社,1998:80. |
Editorial Committee of Flora of China, Chinese Academy of Sciences.Flora of China:Vol.40[M].Beijing:Science Press,1998:80. | |
12 | 刘青.西藏高原红景天遗传多样性与质量分析比较[D].北京:北京中医药大学,2016. |
LIU Q.Genetic diversity and quality comparison of Rhodiola in Tibet Plateau[D].Beijing:Beijing University of Chinese Medicine,2016. | |
13 | 李雪彤,吴委林,权伍荣.红景天属药用植物研究进展[J].延边大学农学学报,2018,40(4):83-90. |
LI X T, WU W L, QUAN W R.Research advances on medicinal plants from Rhodioal L. [J].Journal of Agricultural Science Yanbian University,2018,40(4):83-90. | |
14 | 崔艳梅,娄安如,赵长琦.红景天属植物化学成分及药理作用研究进展[J].北京师范大学学报(自然科学版),2008,44(3):328-333. |
CUI Y M, LOU A R, ZHAO C Q.Phytochemical components and their pharmacological action of Rhodiola L. [J].Journal of Beijing Normal University(Natural Science),2008,44(3):328-333. | |
15 | 关伟,杨长青 .高山红景天提取物对小鼠不同抑郁模型的影响[J].中国民康医学,2012,24(21):2602-2604. |
GUAN W, YANG C Q.Effects of Rhodiola sachalinensis extract on different depression models in mice[J].Medical Journal of Chinese People’s Health,2012,24(21):2602-2604. | |
16 | 陈海娟.青海红景天属药用植物资源研究[D].沈阳:沈阳药科大学,2009. |
CHEN H J.Study on medicinal plant resources of Rhodiola in Qinghai[J].Shenyang:Shenyang Pharmaceutical University,2009. | |
17 | 邱林刚,陈金瑞,蒋思平,等.喜马红景天的化学成分[J].云南植物研究,1989(2):219-222. |
QIU L G, CHEN J R, JIANG S P,et al.The chemical constituents of Rhodiola himalensis [J].Acta Botanica Yunnanica,1989(2):219-222. | |
18 | 张秀.红景天属植物的药用价值[J].中国野生植物资源,1993(2):33-35. |
ZHANG X.The medicinal value of Rhodiola plants[J].Chinese Wild Plant Resources,1993(2):33-35. | |
19 | TAI T H, TANKSLEY S D.A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue[J].Plant Molecular Biology Reporter,1990,8(4):297-303. |
20 | DING B C, SUN Y, RONG F X,et al.The complete mitochondrial genome of Holothuria spinifera (Théel,1866)[J].Mitochondrial DNA Part B,2020,5(2):1679-1680. |
21 | QU X J, MOORE M J, LI D Z,et al.PGA:a software package for rapid,accurate,and flexible batch annotation of plastomes[J].Plant Methods,2019,15(1):50. |
22 | ZHENG S, POCZAI P, HYVÖNEN J,et al.Chloroplot:an online program for the versatile plotting of organelle genomes[J].Frontiers in Genetics,2020,11:576124. |
23 | SHIELDS D C, SHARP P M.Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases[J].Nucleic Acids Research,1987,15(19):8023-8040. |
24 | KATOH K, MISAWA K, KUMA K I,et al.MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform[J].Nucleic Acids Research,2002,30(14):3059-3066. |
25 | KALYAANAMOORTHY S, MINH B Q, WONG T K F,et al.ModelFinder:fast model selection for accurate phylogenetic estimates[J].Nature Methods,2017,14(6):587-589. |
26 | 刘玉萍,吕婷,朱迪,等.青藏高原特有种—藏扇穗茅叶绿体基因组测序及序列分析[J].植物研究,2018,38(4):518-525. |
LIU Y P, LÜ T, ZHU D,et al.Sequencing and alignment analysis of the complete chloroplast genome of Littledalea tibetica,an endemic species from the Qinghai-Tibet Plateau[J].Bulletin of Botanical Research,2018,38(4):518-525. | |
27 | 兰青阔,陈锐,赵新,等.贝母属药用植物叶绿体基因组单核苷酸多态性位点生物信息学分析[J].食品安全质量检测学报,2018,9(17):4527-4533. |
LAN Q K, CHEN R, ZHAO X,et al.Bioinformatics analysis for single nucleotide polymorphism sites of chloroplast genome of Fritillaria [J].Journal of Food Safety and Quality,2018,9(17):4527-4533. | |
28 | 高雪萍.拟南芥WXR1和WXR3蛋白参与淀粉代谢作用机理的研究[D].泰安:山东农业大学,2015. |
GAO X P.Functional analysis of the Arabidopsis WXR1,WXR3 proteins during the starch metabolism[D].Tai’an:Shandong Agricultural University,2015. | |
29 | CHEN S L, YAO H, HAN J P,et al.Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species[J].PLoS One,2010,5(1):e8613. |
30 | 姜汶君,郭梦月,庞晓慧.叶绿体基因组在药用植物鉴定及系统进化研究中的应用[J].世界中医药,2020,15(5):702-708,716. |
JIANG W J, GUO M Y, PANG X H.Application of chloroplast genome in identification and phylogenetic analysis of medicinal plants[J].World Chinese Medicine,2020,15(5):702-708,716. | |
31 | 张慧,何帅兵,孔繁德,等.益母草叶绿体基因组序列与系统进化位置分析[J].中医药信息,2018,35(4):21-27. |
ZHANG H, HE S B, KONG F D,et al.Sequence of chloroplast genome and the phyletic evolution within Leonurus artemisia [J].Information on Traditional Chinese Medicine,2018,35(4):21-27. | |
32 | ZHOU Y X, NIE J, XIAO L,et al.Comparative chloroplast genome analysis of rhubarb botanical origins and the development of specific identification markers[J].Molecules,2018,23(11):2811. |
33 | 李素,陈芳,殷缘,等.山新杨PdPapGH12基因克隆及其响应胁迫的组织表达[J].森林工程,2021,37(4):11-21. |
LI S, CHEN F, YIN Y,et al.Cloning of PdPapGH12 gene of Shanxin poplar (Populus davidiana × P. alba var.pyramidlis) and its tissue expression in response to stress[J].Forest Engineering,2021,37(4):11-21. | |
34 | ZHANG T W, FANG Y J, WANG X M,et al.The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica:insights into the evolution of plant organellar genomes[J].PLoS One,2012,7(1):e30531. |
35 | DU Q Z, WANG B W, WEI Z Z,et al.Genetic diversity and population structure of Chinese white poplar(Populus tomentosa) revealed by SSR markers[J].Journal of Heredity,2012,103(6):853-862. |
36 | 刘凌云.基于转录组测序开发SSR标记解析苔草遗传多样性和种群结构[D].北京:北京林业大学,2020. |
LIU L Y.Genetic diversity and population structure analysis of Carex L. based on SSR makers generated by RNA-sequencing[D].Beijing:Beijing Forestry University,2020. | |
37 | 段义忠,杜忠毓,王海涛.西北干旱区孑遗濒危植物四合木(Tetraena mongolica)叶绿体基因组特征研究及比较分析[J].植物研究,2019,39(5):653-663. |
DUAN Y Z, DU Z Y, WANG H T.Chloroplast genome characteristics of endangered relict plant Tetraena mongolica in the arid region of northwest China[J].Bulletin of Botanical Research,2019,39 (5):653-663. | |
38 | KUANG D Y, WU H, WANG Y L,et al.Complete chloroplast genome sequence of Magnolia kwangsiensis(Magnoliaceae):implication for DNA barcoding and population genetics[J].Genome,2011,54(8):663-673. |
39 | HANSEN D R, DASTIDAR S G, CAI Z Q,et al.Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms:Buxus(Buxaceae),Chloranthus(Chloranthaceae),Dioscorea(Dioscoreaceae),and Illicium(Schisandraceae)[J].Molecular Phylogenetics and Evolution,2007,45(2):547-563. |
40 | 周晓君,张凯,彭正锋,等.矮牡丹与芍药属其他5个种叶绿体基因组特征的比较[J].林业科学,2020,56(4):82-88. |
ZHOU X J, ZHANG K, PENG Z F,et al.Comparative analysis of chloroplast genome characteristics between Paeonia jishanensis and other five species of Paeonia [J].Scientia Silvae Sinicae,2020,56(4):82-88. | |
41 | KANE N C, CRONK Q.Botany without borders:barcoding in focus[J].Molecular Ecology,2008,17(24):5175-5176. |
[1] | 万雪琴, 时羽杰, 黄金亮, 糜加轩, 钟宇, 张帆, 陈良华. 杨属植物分类的研究进展和展望[J]. 植物研究, 2023, 43(2): 161-168. |
[2] | 王飞, 赵文植, 董章宏, 马路遥, 李卫英, 李宗艳, 辛培尧. 丝兰属6种植物叶绿体基因组特征分析[J]. 植物研究, 2023, 43(1): 109-119. |
[3] | 芦永昌, 张鑫, 张璐燕, 王久利. 辽东丁香完整叶绿体基因组的结构与特征[J]. 植物研究, 2023, 43(1): 120-130. |
[4] | 穆赢通, 樊东昌, 吕丽娟, 李晓杰, 路景诗, 张晓明. 毛茛科和芍药科叶绿体基因组密码子特征和系统发育比较[J]. 植物研究, 2022, 42(6): 964-975. |
[5] | 夏铭泽, 张发起, 迟晓峰, 韩霜, 陈世龙. 梅花草属叶绿体基因组进化分析[J]. 植物研究, 2022, 42(4): 626-636. |
[6] | 杨晨, 姚雪莹, 陈志祥, 王奇志. 红花变豆菜叶绿体基因组结构及同属种间关系研究[J]. 植物研究, 2022, 42(3): 437-445. |
[7] | 苏丹丹, 刘玉萍, 刘涛, 郑长远, 张雨, 王亚男, 秦娜, 苏旭. 苦马豆叶绿体基因组结构及其特征分析[J]. 植物研究, 2022, 42(3): 446-454. |
[8] | 曹倩, 徐隆华, 王久利, 张发起, 陈世龙. 獐牙菜亚族植物的系统发育分析[J]. 植物研究, 2021, 41(3): 408-418. |
[9] | 杨晨, 陈志祥, 姚雪莹, 王河山, 王奇志. 中国15种变豆菜属植物的花粉形态及系统学分析[J]. 植物研究, 2020, 40(6): 805-812. |
[10] | 付涛, 王志龙, 林乐静, 林立, 李文, 袁冬明. 中国主栽樱花的分子系统发育分析[J]. 植物研究, 2020, 40(6): 876-885. |
[11] | 张衷华, 宋晓倩, 唐中华, 梁正伟. 中国盐生植物系统发育多样性及省域差异性[J]. 植物研究, 2020, 40(3): 330-338. |
[12] | 段义忠, 杜忠毓, 王海涛. 西北干旱区孑遗濒危植物四合木(Tetraena mongolica)叶绿体基因组特征研究及比较分析[J]. 植物研究, 2019, 39(5): 653-663. |
[13] | 朱弘, 伊贤贵, 朱淑霞, 王华辰, 段一凡, 王贤荣. 基于叶绿体DNA atpB-rbcL片段的典型樱亚属部分种的亲缘关系及分类地位探讨[J]. 植物研究, 2018, 38(6): 820-827. |
[14] | 张妍彤, 黄剑, 宋菊, 林丽梅, 冯若宣, 邢朝斌. 壳斗科植物叶绿体基因组结构及变异分析[J]. 植物研究, 2018, 38(5): 757-765. |
[15] | 刘玉萍, 吕婷, 朱迪, 周勇辉, 刘涛, 苏旭. 青藏高原特有种-藏扇穗茅叶绿体基因组测序及序列分析[J]. 植物研究, 2018, 38(4): 518-525. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||