植物研究 ›› 2022, Vol. 42 ›› Issue (4): 592-601.doi: 10.7525/j.issn.1673-5102.2022.04.009
收稿日期:
2021-11-22
出版日期:
2022-07-20
发布日期:
2022-07-15
通讯作者:
姜静
E-mail:jiangjing1960@126.com
作者简介:
陈坤(1995—),男,博士研究生,主要从事林木遗传育种方面的研究。
基金资助:
Kun CHEN, Gonggui FANG, Huaizhi MU, Jing JIANG()
Received:
2021-11-22
Online:
2022-07-20
Published:
2022-07-15
Contact:
Jing JIANG
E-mail:jiangjing1960@126.com
About author:
CHEN Kun(1995—),male,Ph.D,mainly engaged in tree genetics and breeding research.
Supported by:
摘要:
PIN蛋白家族作为植物中重要的生长素外排载体家族,在植物生长和发育过程中表现出广泛的生理效应。为了进一步了解BpPIN3的功能,探究其在白桦(Betula platyphylla)发育过程中及其对不同激素信号和非生物胁迫的响应,采用生物信息学方法分析白桦BpPIN3启动子序列。以1年生和2年生白桦无性系苗木的根、茎、叶和顶芽为材料进行组织部位表达模式分析。以白桦幼苗为材料,用100 μmol·L-1生长素(IAA)、100 μmol·L-1赤霉素(GA3)、200 μmol·L-1脱落酸(ABA)和长光照条件下分别进行激素诱导和光胁迫处理,并取激素处理后0、2、4、8、16、24、48 h以及光胁迫后0、1、3、6,12、24、48、72 h时的白桦叶片和根提取RNA,利用qRT-PCR技术分析BpPIN3基因的表达情况。结果显示:BpPIN3启动子序列包含赤霉素、脱落酸、茉莉酸甲酯等不同类型的生长素响应元件,以及多个与逆境相关的顺式调控元件。BpPIN3在不同生长年份白桦的多个组织部位都有表达,尤其在叶片中表达量较高,并且所有组织部位中BpPIN3第二年的表达量均高于第一年。BpPIN3基因在不同处理条件下,不同部位间的相对表达量的变化存在一定差异,IAA及GA能够诱导白桦叶片组织细胞中的BpPIN3上调表达;而在ABA处理下除16、48 h外,BpPIN3基因表现出与IAA处理下相反的表达模式。在根组织中,IAA、GA3及ABA均能诱导BpPIN3的表达。在叶片组织中,遮光胁迫诱导了BpPIN3基因的表达;在根组织中,随着处理时间的推移,12 h开始BpPIN3基因的相对表达量均显著高于对照(0 h)。根据试验结果,推测BpPIN3基因在白桦生长发育过程,以及IAA、GA3和ABA信号转导途径和植物光响应过程中发挥重要调控作用。
中图分类号:
陈坤, 方功桂, 穆怀志, 姜静. 白桦BpPIN3基因启动子序列及应答特性分析[J]. 植物研究, 2022, 42(4): 592-601.
Kun CHEN, Gonggui FANG, Huaizhi MU, Jing JIANG. Analysis of the Promoter Sequence and Response Characteristics of the BpPIN3 gene in Betula platyphylla[J]. Bulletin of Botanical Research, 2022, 42(4): 592-601.
表1
BpPIN3 启动子区域主要顺式作用元件预测
顺式作用元件 Cis-acting element | 核心序列 Core sequence | 数量 Number | 功能 Function |
---|---|---|---|
ABRE | ACGTG | 7 | ABA响应元件 Responsive to ABA |
ARE | AAACCA | 1 | 厌氧诱导的必须调控元件 Regulatory element essential for anaerobic induction |
BOX4 | ATTAAT | 1 | 光响应元件 Light responsive element |
CAAT-box | CAAT | 35 | 顺式作用元件 cis-acting element |
CCAAT-box | CAACGG | 1 | MYBHv1结合位点 MYBHv1 binding site |
CGTCA-motif | CGTCA | 1 | MEJA顺式作用调节元件 MEJA cis-acting regulatory element |
G-box | CACGTT | 7 | 光响应元件 Light responsive element |
GARE-box | TCTGTTG | 2 | 赤霉素反应元件 Gibberellin-responsive element |
GT1-motif | GGTTAA | 2 | 光响应元件 Light responsive element |
HD-Zip 3 | GTAAT(G/C)ATTAC | 1 | 蛋白结合位点 Protein binding site |
LTR | CCGAAA | 2 | 低温响应顺式作用元件 Low-temperature responsiveness cis-acting element |
MBS | CAACTG | 1 | MYB结合位点参与干旱诱导MYB binding site involved in drought-inducibility |
P-box | CCTTTG | 1 | 赤霉素反应元件 Gibberellin-responsive element |
TATA-box | TATA | 58 | 转录起始-30核心启动子元件 Core promoter element around-30 of transcription start |
TCA-element | CCATCTTTT | 1 | 水杨酸反应元件 Salicylic-responsive element |
TCT-motif | TGACG | 1 | 光响应元件Light responsive element |
1 | BOOKER J, CHATFIELD S, LEYSER O.Auxin acts in xylem-associated or medullary cells to mediate apical dominance[J].The Plant Cell,2003,15(2):495-507. |
2 | VANNESTE S, FRIML J.Auxin:a trigger for change in plant development[J].Cell,2009,136(6):1005-1016. |
3 | BENJAMINS R, SCHERES B.Auxin:the looping star in plant development[J].Annual Review of Plant Biology,2008,59(1):443-465. |
4 | PARK J, PARK J, KIM Y,et al.GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis [J].Journal of Biological Chemistry,2007,282(13):10036-10046. |
5 | SWARUP R, BENNETT M.Auxin transport:the fountain of life in plants? [J].Development Cell,2003,5(6):824-826. |
6 | PETRÁSEK J, MRAVEC J, BOUCHARD R,et al.PIN proteins perform a rate-limiting function in cellular auxin efflux[J].Science,2006,312(5775):914-918. |
7 | GRUNEWALD W, FRIML J.The march of the PINs:developmental plasticity by dynamic polar targeting in plant cells[J].The EMBO Journal,2010,29(16):2700-2714. |
8 | BLILOU I, XU J, WILDWATER M,et al.The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J].Nature,2005,433(7021):39-44. |
9 | ALONSO-PERAL M M, CANDELA H, POZO J C DEL,et al.The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis [J].Development,2006,133(19):3755-3766. |
10 | LUSCHNIG C, GAXIOLA R A, GRISAFI P,et al.EIR1,a root-specific protein involved in auxin transport,is required for gravitropism in Arabidopsis thaliana [J].Genes Development,1998,12(14):2175-2187. |
11 | CHEN Q, LIU Y, MAERE S,et al.A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development[J].Nature Communication,2015,6:8821. |
12 | WILLIGE B C, CHORY J.A current perspective on the role of AGCVIII kinases in PIN-mediated apical hook development[J].Frontiers in Plant Science,2015,6:767. |
13 | GANGULY A, LEE S H, CHO M,et al.Differential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells[J].Plant Physiology,2010,153(3):1046-1061. |
14 | FRIML J, BENKOVÁ E, BLILOU I,et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis [J].Cell,2002,108(5):661-673. |
15 | DING Z, WANG B, MORENO I,et al.ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis [J].Nature Communications,2012,3(1):941. |
16 | MRAVEC J, SKŮPA P, BAILLY A,et al.Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter[J].Nature,2009,459(7250):1136-1140. |
17 | KEUSKAMP D H, POLLMANN S, VOESENEK L A C J,et al.Auxin transport through PIN-FORMED3(PIN3) controls shade avoidance and fitness during competition[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(52):22740-22744. |
18 | FRIML J, VIETEN A, SAUER M,et al.Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis [J].Nature,2003,426(6963):147-153. |
19 | DING Z, GALVÁN-AMPUDIA C S, DEMARSY E,et al.Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis [J].Nature Cell Biology,2011,13(4):447-452. |
20 | 白羽聪,李翔宇,程占超,等.毛竹PIN基因家族的鉴定与生物信息学分析[J].分子植物育种,2019,17(16):5238-5247. |
BAI Y C, LI X Y, CHENG Z C,et al.Identification and bioinformatics analysis of PIN gene family in moso bamboo (Phyllostachys edulis)[J].Molecular Plant Breeding,2019,17(16):5238-5247. | |
21 | 王占军,杨立伟,徐忠东,等.麻疯树PIN基因家族的鉴定与生物信息学分析[J].分子植物育种,2015,13(5):1111-1122. |
WANG Z J, YANG L W, XU Z D,et al.Identification and bioinformatics analysis of the PIN gene family in Jatropha curcas [J].Molecular Plant Breeding,2015,13(5):1111-1122. | |
22 | VIAENE T, DELWICHE C F, RENSING S A,et al.Origin and evolution of PIN auxin transporters in the green lineage[J].Trends in Plant Science,2013,18(1):5-10. |
23 | LIU B B, ZHANG J, WANG L,et al.A survey of Populus PIN-FORMED family genes reveals their diversified expression patterns[J].Journal Experimental Botany,2014,65(9):2437-2448. |
24 | BARKOULAS M,HAY A, KOUGIOUMOUTZI E,et al.A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta [J].Nature Genetics,2008,40(9):1136-1141. |
25 | FORESTAN C, VAROTTO S.The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development[J].Molecular Plant,2012,5(4):787-798. |
26 | SHI Z, JIANG Y, HAN X,et al. SlPIN1 regulates auxin efflux to affect flower abscission process[J].Scientific Reports,2017,7(1):14919. |
27 | PATTISON R J, CATALÁ C.Evaluating auxin distribution in tomato(Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families[J].The Plant Journal,2012,70(4):585-598. |
28 | XIE X D, QIN G Y, SI P,et al.Analysis of Nicotiana tabacum PIN genes identifies NtPIN4 as a key regulator of axillary bud growth[J].Physiologia Plantarum,2017,160(2):222-239. |
29 | SHEN C, YUE R, BAI Y,et al.Identification and analysis of Medicago truncatula auxin transporter gene families uncover their roles in responses to Sinorhizobium meliloti infection[J].Plant and Cell Physiology,2015,56(10):1930-1943. |
30 | SAŃKO-SAWCZENKO I, ŁOTOCKA B, CZARNOCKA W.Expression analysis of PIN genes in root tips and nodules of Medicago truncatula [J].International Journal of Molecular Sciences,2016,17(8):1197. |
31 | ZHANG Y Z, HE P, YANG Z R,et al.A genome-scale analysis of the PIN gene family reveals its functions in cotton fiber development[J].Frontiers Plant Science,2017,8:461. |
32 | GOU J Q, STRAUSS S H, TSAI C J,et al.Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones[J].The Plant Cell,2010,22(3):623-639. |
33 | HAN R, WANG S, LIU C,et al.Transcriptome analysis of a multiple-branches mutant terminal buds in Betula platyphylla × B.pendula [J].Forests,2019,10(5):374. |
34 | QU C, BIAN X Y, HAN R,et al.Expression of BpPIN is associated with IAA levels and the formation of lobed leaves in Betula pendula ‘Dalecartica’[J].Journal of Forestry Research,2020,31(1):87-97. |
35 | 刘宇,徐焕文,刘桂丰,等.赤霉素GA4+7处理下白桦无性系生长及差异基因表达分析[J].林业科学研究,2017,30(1):181-189. |
LIU Y, XU H W, LIU G F,et al.Analysis of clonal growth and differences in gene expression of Betula platyphylla × B.pendula under GA4+7 treatment[J].Forest Research,2017,30(1):181-189. | |
36 | 黄海娇,李慧玉,姜静. BpAP1转基因白桦中开花相关基因的时序表达[J].东北林业大学学报,2017,45(1):1-6. |
HUANG H J, LI H Y, JIANG J.Quantitative expression analysis of several flowering-related genes in BpAP1 transgenic birch(Betula platyphylla × Betula pendula)[J].Journal of Northeast Forestry University,2017,45(1):1-6. | |
37 | AHUJA I, DE VOS R C H, BONES A M,et al.Plant molecular stress responses face climate change[J].Trends in Plant Science,2010,15(12):664-674. |
38 | DU H, LIU H B, XIONG L Z.Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice[J].Frontiers in Plant Science,2013,4:397. |
39 | SHANI E, SALEHIN M, ZHANG Y,et al.Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors[J].Current Biology,2017,27(3):437-444. |
40 | ZAHIR Z A.Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L.under salt sress conditions[J].Journal of Microbiology and Biotechnology,2010,20(9):1288-1294. |
41 | TANAKA H, DHONUKSHE P, BREWER P B,et al.Spatiotemporal asymmetric auxin distribution:a means to coordinate plant development[J].Cellular and Molecular Life Sciences,2006,63(23):2738-2754. |
42 | POTTERS G, PASTERNAK T P, GUISEZ Y,et al.Stress-induced morphogenic responses:growing out of trouble?[J].Trends in Plant Science,2007,12(3):98-105. |
43 | TOGNETTI V B, AKEN O VAN, MORREEL K,et al.Perturbation of indole-3-butyric acid homeostasis by the UDP-Glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance[J].The Plant Cell,2010,22(8):2660-2679. |
44 | CASANOVA-SÁEZ R, VOß U.Auxin metabolism controls developmental decisions in land plants[J].Trends in Plant Science,2019,24(8):741-754. |
45 | BRUMOS J, ROBLES L M, YUN J,et al.Local auxin biosynthesis is a key regulator of plant development[J].Developmental Cell,2018,47(3):306-318.e5. |
46 | DING Y H, MA Y Z, LIU N,et al.MicroRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton(Gossypium hirsutum)[J].The Plant Journal,2017,91(6):977-994. |
47 | ZHANG Q, LI J J, ZHANG W J,et al.The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance[J].The Plant Journal,2012,72(5):805-816. |
48 | FRIML J.Subcellular trafficking of PIN auxin efflux carriers in auxin transport[J].European Journal of Cell Biology,2010,89(2/3):231-235. |
49 | WANG J R, HU H, WANG G H,et al.Expression of PIN genes in rice(Oryza sativa L.):tissue specificity and regulation by hormones[J].Molecular Plant,2009,2(4):823-831. |
50 | YUE R,TIE S, SUN T,et al.Genome-wide identification and expression profiling analysis of ZmPIN,ZmPILS,ZmLAX and ZmABCB auxin transporter gene families in maize(Zea mays L.) under various abiotic stresses[J].PLoS One,2015,10(3):e0118751. |
51 | 杨蕴力,渠畅,王阳,等.白桦BpPIN5基因启动子组织定位及外源激素应答分析[J].植物研究,2022,42(1):104-111. |
YANG Y L, QU C, WANG Y,et al.Tissue-specific expression and analysis of exogenous hormone response of BpPIN5 gene promoter in Betula platyphylla [J].Bulletin of Botanical Research,2022,42(1):104-111. | |
52 | 王博,曹红利,黄玉婷,等.茶树生长素外运载体基因CsPIN3的克隆与表达分析[J].作物学报,2016,42(1):58-69. |
WANG B, CAO H L, HUANG Y T,et al.Cloning and expression analysis of auxin efflux carrier gene CsPIN3 in tea plant(Camellia sinensis)[J].Acta Agronomica Sinica,2016,42(1):58-69. | |
53 | 李玉军,赵燕,黄丽华,等.十字花科植物PIN3基因调控元件及表达分析[J].中国农业大学学报,2017,22(7):24-33. |
LI Y J, ZHAO Y, HUANG L H,et al.Regulating elements and expression analysis of PIN3 gene in Brassicaceae family[J].Journal of China Agricultural University,2017,22(7):24-33. | |
54 | SEO P J, PARK C M.Auxin homeostasis during lateral root development under drought condition[J].Plant Signaling & Behavior,2009,4(10):1002-1004. |
55 | WANG W, DING G D, WHITE P J,et al.Mapping and cloning of quantitative trait loci for phosphorus efficiency in crops:opportunities and challenges[J].Plant and Soil,2019,439(1/2):91-112. |
56 | ADAMOWSKI M, FRIML J.PIN-dependent auxin transport:action,regulation,and evolution[J].The Plant Cell,2015,27(1):20-32. |
57 | ZHANG X, LIU L, WANG H,et al. MtPIN1 and MtPIN3 play dual roles in regulation of shade avoidance response under different environments in Medicago truncatula [J].International Journal of Molecular Sciences,2020,21(22):8742. |
[1] | 陈柄华, 张杰, 刘桂丰, 李思婷, 高元科, 李慧玉, 李天芳. 白桦半同胞家系纸浆材优良家系选择及选择方法评价[J]. 植物研究, 2023, 43(5): 690-699. |
[2] | 裘喻平, 王益川, 郭红卫. 植物根毛发育调控机制的研究进展[J]. 植物研究, 2023, 43(3): 321-332. |
[3] | 王景哲, 牛朝奎, 梁馨元, 申晨静, 尹静. 水杨酸在白桦苗期抵御盐碱胁迫中的调控作用[J]. 植物研究, 2023, 43(3): 379-387. |
[4] | 杜金霞, 申婷婷, 王浩然, 林一萍, 李慧玉, 张连飞. 白桦BpSPL9基因抑制表达载体的构建及遗传转化研究[J]. 植物研究, 2023, 43(1): 30-35. |
[5] | 杜习武, 秦俊, 叶康, 胡永红, 陶懿伟, 彭勇政, 沈雁翔, 梁言, 曾丽. 淹水胁迫对星花玉兰及其品种光合特性的影响[J]. 植物研究, 2022, 42(3): 483-491. |
[6] | 张玉琦, 苏欣, 尤志强, 富金博, 詹亚光, 尹静. 不同激素处理对白桦幼树萌条及三萜合成的影响[J]. 植物研究, 2022, 42(2): 289-298. |
[7] | 杨蕴力, 渠畅, 王阳, 刘桂丰, 姜静. 白桦BpPIN5基因启动子组织定位及外源激素应答分析[J]. 植物研究, 2022, 42(1): 104-111. |
[8] | 马庆, 李芳蕊, 刘桂丰, 李慧玉. 航天诱变白桦生长性状分析[J]. 植物研究, 2021, 41(4): 540-546. |
[9] | 吕东林, 李腾, 郭译文, 姜静, 黄海娇. 转基因白桦杂交子代种子活力及外源基因遗传规律分析[J]. 植物研究, 2021, 41(4): 564-572. |
[10] | 郭依萍, 刘佳欣, 于颖, 王超, 杨传平. 白桦BpNAC012基因调控白桦木质部发育表达谱分析[J]. 植物研究, 2021, 41(2): 251-261. |
[11] | 刘佳欣, 刘慧子, 石晶静, 于颖, 王超. 白桦MYB基因响应激素及盐旱处理的表达研究[J]. 植物研究, 2020, 40(5): 743-750. |
[12] | 王万奇, 齐婉竹, 赵秋爽, 曾栋, 刘轶, 付鹏跃, 曲冠证, 赵曦阳. 白桦BpJMJ18基因启动子克隆及表达分析[J]. 植物研究, 2020, 40(5): 751-759. |
[13] | 姜骋, 张曦, 田晴, 李莉. 白桦BpbHLH112基因克隆及其启动子表达特性分析[J]. 植物研究, 2020, 40(4): 583-592. |
[14] | 李影, 李林夕, 张玉琦, 王宇, 詹亚光, 尹静. 一种高效的白桦树皮中白桦脂醇分离、纯化方法[J]. 植物研究, 2020, 40(3): 468-475. |
[15] | 孙硕, 王秀伟, 杜梦甜, 李京航, 王博一, 刘桂丰. 不同种源白桦根CO2释放通量地点和根径级间的差异[J]. 植物研究, 2020, 40(3): 476-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||