欢迎访问《植物研究》杂志官方网站,今天是 分享到:

植物研究 ›› 2025, Vol. 45 ›› Issue (1): 34-44.doi: 10.7525/j.issn.1673-5102.2025.01.005

• 研究论文 • 上一篇    下一篇

大庆城区草地地上生物量时空格局及其与气候因子关系

何昭鑫1, 吴连峰2, 王永喆1, 顾云杰2, 赵凤伟2, 王兴昌1, 王晓春1()   

  1. 1.东北林业大学生态学院,哈尔滨 150040
    2.大庆油田生态环境管护公司,大庆 163411
  • 收稿日期:2024-10-07 出版日期:2025-01-20 发布日期:2025-01-23
  • 通讯作者: 王晓春 E-mail:wangx@nefu.edu.cn
  • 作者简介:何昭鑫(1998—),男,硕士研究生,主要从事林业碳汇研究。
  • 基金资助:
    大庆油田生态环境管护公司委托研发项目(DQGLJ-STGH-2023-JS-504)

Spatio-temporal Pattern of Aboveground Biomass in Daqing Grassland and Its Relationship with Climatic Factors

Zhaoxin HE1, Lianfeng WU2, Yongzhe WANG1, Yunjie GU2, Fengwei ZHAO2, Xingchang WANG1, Xiaochun WANG1()   

  1. 1.College of Ecology,Northeast Forestry University,Harbin 150040
    2.Daqing Oilfield Ecological Environment Management Company,Daqing 163411
  • Received:2024-10-07 Online:2025-01-20 Published:2025-01-23
  • Contact: Xiaochun WANG E-mail:wangx@nefu.edu.cn

摘要:

草地是大庆市最主要的土地类型之一,掌握草地生物量的时空动态对了解大庆地区的碳汇潜力具有重要意义。运用MODIS-NDVI遥感数据和草地地上生物量实测数据,结合回归分析构建大庆城区草地地上生物量遥感反演模型。使用趋势分析及相关分析等方法,对大庆草地地上生物量过去20余年的时空分布格局及其与主要气候因子(降水量、温度)的关系进行研究。结果显示:利用归一化植被指数(NDVI)构建的指数函数反演模型对大庆草地地上生物量解释度最高,其决定系数R2 为0.77,均方根误差为38 g⋅m-2。2000—2023年大庆城区草地生物量表现为波动增加的趋势,2019年达到最高314 g⋅m-2;大部分区域草地地上生物量呈显著上升趋势,最大值为423 g⋅m-2,平均值为280 g⋅m-2,其空间特征呈现为从东南到西北逐渐增加的分布格局,北部集中、南部分散。降水量对生物量有显著的促进作用(r=0.584,P<0.05),月均温对生物量作用不明显。以上研究结果可以为大庆草地科学设置载畜量和采油区、优化草地资源利用策略提供有力的理论基础和数据支持。

关键词: 大庆城区, 草地, 遥感反演模型, 草地地上生物量, 归一化植被指数

Abstract:

Grassland is one of the most important land types in Daqing, and it is of great significance to grasp the spatial and temporal dynamics of grassland biomass to understand the carbon sink potential of Daqing. The remote sensing inversion model of aboveground grass biomass in Daqing was constructed by using MODIS-NDVI remote sensing data and aboveground grass biomass measured data and regression analysis. Trend analysis and correlation analysis were used to clarify the spatial and temporal distribution pattern of aboveground biomass and its relationship with major climate factors(precipitation and temperature) in Daqing over the past 20 years. The results showed that the exponential function inversion model constructed by using normalized difference vegetation index(NDVI) had the best interpretation of the aboveground biomass of grassland in Daqing, and the coefficient of determination R2 was 0.77 and the root mean square error (RMSE) was 38 g⋅m-2. The grassland biomass in Daqing urban areas showed a trend of fluctuating increase from 2000 to 2023, and reached a maximum value of 314 g⋅m-2 in 2019; the aboveground biomass of grassland in most areas showed a significant increasing trend, with a maximum value of 423 g⋅m-2 and an average value of 280 g⋅m-2, and its spatial characteristics showed a gradually increasing distribution pattern from southeast to northwest, with concentration in the north and dispersion in the south. Precipitation had a significant effect on biomass(r=0.584, P<0.05), but the monthly mean temperature had no significant effect on biomass. The above results might provide a strong theoretical basis and data support for the scientific setting of livestock loading and oil extraction area and the optimization of grassland resource utilization strategy in Daqing.

Key words: Daqing urban area, grassland, remote sensing inversion model, aboveground biomass of grassland, normalized difference vegetation index

中图分类号: