Bulletin of Botanical Research ›› 2022, Vol. 42 ›› Issue (4): 713-720.doi: 10.7525/j.issn.1673-5102.2022.04.021
• Review • Previous Articles
Jiaorao CHEN1, Xu XU1, Zhangli HU1, Shuang YANG1,2()
Received:
2022-03-25
Online:
2022-07-20
Published:
2022-07-15
Contact:
Shuang YANG
E-mail:664867025@qq.com
About author:
CHEN Jiaorao(1997—),female,master,research interest is plant stress physiology.
Supported by:
CLC Number:
Jiaorao CHEN, Xu XU, Zhangli HU, Shuang YANG. Recent Advances on Salt Stress Sensitivity and Related Calcium Signals in Plants[J]. Bulletin of Botanical Research, 2022, 42(4): 713-720.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2022.04.021
Fig.2
Calcium signaling in plant response to salt stressABI.ABA-insensitive;CaX. Ca2+/H+ exchanger;CBL.Calcineurin B-like proteins;CIPK.CBL-interacting protein kinase;CNGC.Cyclic nucleotide-gated channel;FER.FERONIA;GIPC.Glycosyl inositol phosphorylceramide;GI.GIGANTEA protein;GLR.Glutamate receptor;HKT.High-affinity K+channel;NHX.Na+/H+ exchanger;SOS.Salt overly sensitive;Vacuole.Vacuole;14-3-3. 14-3-3 protein;The arrow and bars,indicate positive and negative regulation;Dashed lines and question marks,indicate uncertain and unknown mechanism
1 | MORTON M J L, AWLIA M, AL-TAMIMI N,et al.Salt stress under the scalpel-dissecting the genetics of salt tolerance[J].The Plant Journal,2019,97(1):148-163. |
2 | URI N.Cropland soil salinization and associated hydrology:trends,processes and examples[J].Water,2018,10(8):1030. |
3 | 向晶,钟甫宁.人口结构变动对未来粮食需求的影响:2010—2050[J].中国人口·资源与环境,2013,23(6):117-121. |
XIANG J, ZHONG F N.Impact of demographic transition on food demand in China:2010-2050[J].China Population,Resources and Environment,2013,23(6):117-121. | |
4 | NEGRÃO S, SCHMÖCKEL S M, TESTER M.Evaluating physiological responses of plants to salinity stress[J].Annals of Botany,2017,119(1):1-11. |
5 | EVAN ZELM, ZHANG Y X, TESTERINK C.Salt tolerance mechanisms of plants[J].Annual Review of Plant Biology,2020,71(1):403-433. |
6 | LIANG W J, MA X L, WAN P,et al.Plant salt-tolerance mechanism:a review[J].Biochemical and Biophysical Research Communications,2018,495(1):286-291. |
7 | JULKOWSKA M M, TESTERINK C.Tuning plant signaling and growth to survive salt[J].Trends in Plant Science,2015,20(9):586-594. |
8 | YANG Y Q, GUO Y.Elucidating the molecular mechanisms mediating plant salt-stress responses[J].New Phytologist,2018,217(2):523-539. |
9 | BOSE J, POTTOSIN I I, SHABALA S S,et al.Calcium efflux systems in stress signaling and adaptation in plants[J].Frontiers in Plant Science,2011,2:85. |
10 | GONG C M, SHI C, DING X T,et al.Hydrogen sulfide induces Ca2+ signal in guard cells by regulating reactive oxygen species accumulation[J].Plant Signaling & Behavior,2020,15(11): 1805228. |
11 | ZHANG Q, SONG T, GUAN C,et al.OsANN4 modulates ROS production and mediates Ca2+ influx in response to ABA[J].BMC Plant Biology,2021,21(1):474. |
12 | 李甜,原丽,张军,等.非损伤微测技术实时检测海马脑片跨膜钙离子流[J].生理学报,2017,69(4):467-476. |
LI T, YUAN L, ZHANG J,et al.Real-time measurement of Ca2+ flux in hippocampal slice with non-invasive microtest technique[J].Acta Physiologica Sinica,2017,69(4):467-476. | |
13 | MANISHANKAR P, WANG N L, KÖSTER P,et al.Calcium signaling during salt stress and in the regulation of ion homeostasis[J].Journal of Experimental Botany,2018,69(17):4215-4226. |
14 | VINCENT T R, AVRAMOVA M, CANHAM J,et al.Interplay of plasma membrane and vacuolar ion channels,together with BAK1,elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding[J].The Plant Cell,2017,29(6):1460-1479. |
15 | GONG Z Z, XIONG L M, SHI H Z,et al.Plant abiotic stress response and nutrient use efficiency[J].Science China-Life Sciences,2020,63(5):635-674. |
16 | FENG W, KITA D, PEAUCELLE A,et al.The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling[J].Current Biology,2018,28(5):666-675. |
17 | ZHAO C Z, JIANG W, ZAYED O,et al.The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones[J].National Science Review,2021,8(1):nwaa149. |
18 | JIANG Z, ZHOU X, TAO M,et al.Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J].Nature,2019,572(7769):341-346. |
19 | YUAN F, YANG H, XUE Y,et al.OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis [J].Nature,2014,514(7522):367-371. |
20 | LIU X, WANG J W, SUN L F.Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2[J].Nature Communications,2018,9:5060. |
21 | ZHAI Y J, WEN Z H, HAN Y,et al.Heterogeneous expression of plasma-membrane-localised OsOSCA1.4 complements osmotic sensing based on hyperosmolality and salt stress in Arabidopsis oscal mutant[J].Cell Calcium,2020,91:102261. |
22 | THOR K, JIANG S S, MICHARD E,et al.The calcium - permeable channel OSCA1.3 regulates plant stomatal immunity[J].Nature,2020,585(7826):569-573. |
23 | ALDON D, MBENGUE M, MAZARS C,et al.Calcium signalling in plant biotic interactions[J].International Journal of Molecular Sciences,2018,19(3):665. |
24 | SHI S J, LI S G, ASIM M,et al.The Arabidopsis calcium-dependent protein kinases(CDPKs) and their roles in plant growth regulation and abiotic stress responses[J].International Journal of Molecular Sciences,2018,19(7):1900. |
25 | GAO X Q,COXJR. K L,HE P.Functions of calcium-dependent protein kinases in plant innate immunity[J].Plants:Basel,Switzerland,2014,3(1):160-176. |
26 | LIESE A, ROMEIS T.Biochemical regulation of in vivo function of plant calcium-dependent protein kinases(CDPK)[J].Biochimica et Biophysica Acta(BBA)-Molecular Cell Research,2013,1833(7):1582-1589. |
27 | HAMEL L P, SHEEN J, SÉGUIN A.Ancient signals:comparative genomics of green plant CDPKs[J].Trends in Plant Science,2014,19(2):79-89. |
28 | HUANG K, PENG L, LIU Y Y,et al. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response[J].Biochemical and Biophysical Research Communications,2018,498(1):92-98. |
29 | ZHANG H L, ZHANG Y N, DENG C,et al.The Arabidopsis Ca2+- dependent protein kinase CPK12 is involved in plant response to salt stress[J].International Journal of Molecular Sciences,2018,19(12):4062. |
30 | GAO W, XU F C, GUO D D,et al.Calcium-dependent protein kinases in cotton:insights into early plant responses to salt stress[J].BMC Plant Biology,2018,18(1):15. |
31 | ZHAO R, SUN H M, ZHAO N,et al.The Arabidopsis Ca2+- dependent protein kinase CPK27 is required for plant response to salt-stress[J].Gene,2015,563(2):203-214. |
32 | BECKMANN L, EDEL K H, BATISTIČ O,et al.A calcium sensor-protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species[J].Scientific Reports,2016,6:31645. |
33 | ZHANG K, HAN Y T, ZHAO F L,et al.Genome-wide identification and expression analysis of the CDPK gene family in grape,Vitis spp.[J].BMC Plant Bology,2015,15:164. |
34 | KLEE C B, VANAMAN T C.Calmodulin[J].Advances in Protein Chemistry,1982,35:213-321. |
35 | ZENG H Q, ZHANG Y X, ZHANG X J,et al.Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling[J].Frontiers in Plant Science,2017,8:877. |
36 | ZHOU S, JIA L X, CHU H Y,et al. Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathione reductase via direct binding[J].PLoS Genetics,2016,12(9):e1006255. |
37 | MA X, LI Q H, YU Y N,et al.The CBL-CIPK pathway in plant response to stress signals[J].International Journal of Molecular Sciences,2020,21(16):5668. |
38 | KLEIST T J, SPENCLEY A L, LUAN S.Comparative phylogenomics of the CBL-CIPK calcium - decoding network in the moss Physcomitrella,Arabidopsis,and other green lineages[J].Frontiers in Plant Science,2014,5:187. |
39 | MA L, YE J M, YANG Y Q,et al.The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress[J].Developmental Cell,2019,48(5):697-709. |
[1] | Lei XU, Xiao XU, Qinsong LIU. Effects of Exogenous Salicylic Acid on Antioxidant System and Gene Expression of Davidia involucrata Seedlings under Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(4): 572-581. |
[2] | Li LI, Xin WANG, Yuejing ZHANG, Lingyun JIA, Hailong PANG, Hanqing FENG. Effects of Abiotic Stresses on the Intracellular and Extracellular ATP Levels of Tobacco Suspension Cells [J]. Bulletin of Botanical Research, 2023, 43(2): 179-185. |
[3] | Shixian LIAO, Yuting WANG, Liben DONG, Yongmei GU, Fenglin JIA, Tingbo JIANG, Boru ZHOU. Function Analysis of the Transcription Factor PsnbZIP1 of Populus simonii×P. nigra in Response to Salt Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 288-299. |
[4] | Senyao LIU, Fenglin JIA, Qing GUO, Gaofeng FAN, Boru ZHOU, Tingbo JIANG. Response Analysis of Transcription Factor PsnbHLH162 Gene in Populus simonii × P. nigra under Salt Stress and Low Temperature Stress [J]. Bulletin of Botanical Research, 2023, 43(2): 300-310. |
[5] | Liran YUE, Yingjie LIU, Chenxu LIU, Yunwei ZHOU. Cloning and Functional Analysis of miR398a from Chrysanthemum× grandiflora in Response to Salt Stress [J]. Bulletin of Botanical Research, 2022, 42(6): 986-996. |
[6] | Denggao LI, Rui LIN, Qinghui MU, Na ZHOU, Yanru ZHANG, Wei BAI. Cloning and Functional Analysis of StNPR4 gene in Solanum tuberosum [J]. Bulletin of Botanical Research, 2022, 42(5): 821-829. |
[7] | He CHENG, Shuanghui TIAN, Yang ZHANG, Cong LIU, De’an XIA, Zhigang WEI. Genome-wide Identification and Expression Analysis of nsLTP Gene Family in Populus trichocarpa [J]. Bulletin of Botanical Research, 2022, 42(3): 412-423. |
[8] | Shuang-Hui TIAN, He CHENG, Yang ZHANG, Cong LIU, De-An XIA, Zhi-Gang WEI. Genome-wide Identification and Expressional Analysis of Carotenoid Cleavage Dioxygenases(CCD) Gene Family in Populus trichocarpa under Drought and Salt Stress [J]. Bulletin of Botanical Research, 2021, 41(6): 993-1005. |
[9] | Meng-Xuan REN, Yang ZHANG, Shuang WANG, Rui-Qi WANG, Cong LIU, Zhi-Gang WEI. Genome-wide Identification and Expression Analysis GATA Family of Populus trichocarpa [J]. Bulletin of Botanical Research, 2021, 41(1): 107-118. |
[10] | CAO Ming-Wu, LUO Rui, AN Hui, PANG Qiu-Ying. Physiological Response of Suspension Cells of Helianthus tuberosus to NaCl Stress [J]. Bulletin of Botanical Research, 2019, 39(2): 222-228. |
[11] | ZHAO Xiao-Ju, ZHANG Li-Xia, MAN Xiu-Ling. Effects of Exogenous NO on Seed Germination and Physiological Metabolism in Catharanthus roseus Seedling under NaCl Stress [J]. Bulletin of Botanical Research, 2018, 38(5): 669-674. |
[12] | ZHANG Li-Li, ZHANG Fu-Chun. Transcriptomic Analysis of the Halostachys caspica in Response to Short-term Salt Stress [J]. Bulletin of Botanical Research, 2018, 38(1): 91-99. |
[13] | WANG Pei-Long, LIU Zhong-Yuan, ZHANG Teng-Qian, TANG Fei-Fei, QU Guan-Zheng, GAO Cai-Qiu. Cloning and Expression Analysis of ThPP2C Gene from Tamarix hispida [J]. Bulletin of Botanical Research, 2017, 37(3): 395-401. |
[14] | DU Chi, ZHANG Ji, ZHANG Fu-Chun. Expression Analysis of Rev1 and Rev3 of Halostachys caspica under Salt Stress [J]. Bulletin of Botanical Research, 2017, 37(2): 211-215. |
[15] | SI Jing-Na;ZHOU Tao;XU Fang;BO Wen-Hao;WU Rong-Ling*. Salt-responsive MicroRNAs in Populus euphratica by Deep Sequencing [J]. Bulletin of Botanical Research, 2015, 35(6): 836-842. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||