1. Moody R G,Williamson M P. Structure and function of a bacterial Fasciclin Ⅰ domain protein elucidates function of related cell adhesion proteins such as TGFBIp and periostin[J]. FEBS Open Biology,2013,3(1):71-77. 2. Johnson K L,Jones B J,Bacic A,et al. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules[J]. Plant Physiology,2003,133(4):1911-1925. 3. Lafarguette F,Leplé J C,Déjardin A,et al. Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood[J]. New Phytologist,2004,164(1):107-121. 4. Brown D M,Zeef L A H,Ellis J,et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. The Plant Cell,2005,17(8):2281-2295. 5. Ito S,Suzuki Y,Miyamoto K,et al. AtFLA11,a fasciclin-like arabinogalactan-protein,specifically localized in screlenchyma cells[J]. Bioscience,Biotechnology,and Biochemistry,2005,69(10):1963-1969. 6. Persson S,Wei H R,Milne J,et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(24):8633-8638. 7. Macmillan C P,Mansfield S D,Stachurski Z H,et al. Fasciclin-like arabinogalactan proteins:specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus[J]. The Plant Journal,2010,62(4):689-703. 8. Dahiya P,Findlay K,Roberts K,et al. A fasciclin-domain containing gene,ZeFLA11,is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv Envy[J]. Planta,2006,223(6):1281-1291. 9. Macmillan C P,Taylor L,Bi Y D,et al. The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics[J]. New Phytologist,2015,206(4):1314-1327. 10. Deltcheva E,Chylinski K,Sharma C M,et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature,2011,471(7340):602-607. 11. Li J F,Norville J E,Mccormack M,et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nature Biotechnology,2013,31(8):688-691. 12. Jacobs T B,Lafayette P R,Schmitz R J,et al. Targeted genome modifications in soybean with CRISPR/Cas9[J]. BMC Biotechnology,2015,15:16. 13. Baltes N J,Gil-Humanes J,Cermak T,et al. DNA replicons for plant genome engineering[J]. The Plant Cell,2014,26(1):151-163. 14. Liang Z,Zhang K,Chen K L,et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. Journal of Genetics and Genomics,2014,41(2):63-68. 15. Letunic I,Doerks T,Bork P. SMART 7:Recent updates to the protein domain annotation resource[J]. Nucleic Acids Research,2012,40:D302-D305. 16. Petersen T N,Brunak S,Von Heijne G,et al. SignalP 4.0:discriminating signal peptides from transmembrane regions[J]. Nature Methods,2011,8(10):785-786. 17. Xing H L,Dong L,Wang Z P,et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology,2014,14:327. 18. Li S J,Zhen C,Xu W J,et al. Simple,rapid and efficient transformation of genotype Nisqually-1:a basic tool for the first sequenced model tree[J]. Scientific Reports,2017,7:2638. 19. Faik A,Abouzouhair J,Sarhan F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa):identification and bioinformatic analyses[J]. Molecular Genetics and Genomics,2006,276(5):478-494. 20. Huang G Q,Xu W L,Gong S Y,et al. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress[J]. Physiologia Plantarum,2008,134(2):348-359. |