植物研究 ›› 2022, Vol. 42 ›› Issue (6): 1033-1043.doi: 10.7525/j.issn.1673-5102.2022.06.013
收稿日期:
2022-05-22
出版日期:
2022-11-20
发布日期:
2022-11-22
通讯作者:
白薇
E-mail:baiwei@imau.edu.cn
作者简介:
李登高(1990—),男,博士,主要从事植物抗逆分子生物学研究。
基金资助:
Denggao LI, Rui LIN, Qinghui MU, Na ZHOU, Yanru ZHANG, Wei BAI()
Received:
2022-05-22
Online:
2022-11-20
Published:
2022-11-22
Contact:
Wei BAI
E-mail:baiwei@imau.edu.cn
About author:
LI Denggao(1990—),male,doctor,mainly engaged in research of molecular biology of plant stress resistance.
Supported by:
摘要:
为鉴定马铃薯(Solanum tuberosum)中富含半胱氨酸的类受体激酶(cysteine-rich receptor-like kinase,CRKs),利用Pfam等工具对马铃薯蛋白质组和基因组序列进行分析,共鉴定到18个新的马铃薯StCRKs家族基因,这些基因分布在1、2、11和12号染色体上,均具有典型保守的CRK结构域。StCRKs基因的启动子区具有响应5种植物激素、昼夜节律、生物胁迫、非生物胁迫及种子特异性的响应元件。利用qRT-PCR方法对马铃薯盆栽苗开花期的根、茎、叶和花中的18个StCRKs基因进行组织特异性表达分析,结果显示不同基因的表达部位不同。分别用水杨酸类似物BTH和4 ℃低温处理马铃薯,有13个StCRKs基因能够响应低温信号,10个StCRKs基因能够被水杨酸类似物BTH诱导。为进一步深入研究StCRKs在生物胁迫及非生物胁迫中的功能提供了线索。
中图分类号:
李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StCRKs基因家族的鉴定分析及响应逆境信号的表达[J]. 植物研究, 2022, 42(6): 1033-1043.
Denggao LI, Rui LIN, Qinghui MU, Na ZHOU, Yanru ZHANG, Wei BAI. Identification and Analysis of the Potato StCRKs Gene Family and Expression Patterns in Response to Stress Signals[J]. Bulletin of Botanical Research, 2022, 42(6): 1033-1043.
表1
18个 StCRKs 基因信息和引物
基因名称 Gene name | 序列 Sequence ID | 染色体 Locus | 基因长度 Genomic /bp | CDS长度CDS /bp | qRT-PCR引物(5′→3′) Primers of qRT-PCR(5′→3′) |
---|---|---|---|---|---|
StCRK9 | Soltu.DM.01G003430.1 | Chr1 | 4 789 | 1 695 | GACGACAAAGGGTACATTGTTC AACAATCAGCGAGAACATAAGC |
StCRK10 | Soltu.DM.01G003440.1 | Chr1 | 5 831 | 1 938 | AAGTGAGAGCTAGAGGATATGG CCAACAATCGGCGAGAACAT |
StCRK11 | Soltu.DM.01G003450.1 | Chr1 | 2 555 | 1 863 | TAGTTTCCAATGTGTGGGAGC TAAGTTGGCAGTCGAAGCAG |
StCRK12 | Soltu.DM.01G003460.1 | Chr1 | 2 252 | 1 404 | ACTTTCAATGCGGGATAGTGG GCGAGTACATCTCGCAAGG |
StCRK13 | Soltu.DM.01G003470.1 | Chr1 | 2 490 | 1 389 | ACATAAGCACTGTCATTGCTGG ACATGTAACACTCTCGCAACC |
StCRK14 | Soltu.DM.01G003480.1 | Chr1 | 2 536 | 1 869 | GATACAGTCAGCATAGTTTCCG GCTTGAGTGCACAAAAGTCC |
StCRK15 | Soltu.DM.01G003490.1 | Chr1 | 6 864 | 1 965 | CAACATTACGGCCATCTATGTC TACTTCTCTCGAGGGTTGTG |
StCRK16 | Soltu.DM.01G003500.1 | Chr1 | 3 295 | 1 743 | AGAGTACTTAGCACACGGTC GTTGGGATTTCTTGAGTGCAC |
StCRK17 | Soltu.DM.01G003510.1 | Chr1 | 4 486 | 1 938 | TCGCGAGAGTTTTGCATGTG GAGAACACCATGGAACTGCAT |
StCRK18 | Soltu.DM.02G019570.1 | Chr2 | 3 380 | 1 686 | GTAGCAGTAAAGAGATTGGCTG TGATGCGAAGTCTAGAATCCTC |
StCRK19 | Soltu.DM.02G019620.1 | Chr2 | 3 915 | 2 022 | CATGGCAAGGCTATTTACATTG TGGGGTCAATCAAATTTGCAGC |
StCRK20 | Soltu.DM.02G019650.1 | Chr2 | 3 850 | 1 938 | AACTCAAGGCAGCACAAACAG GCCTCATTTCGTGATGAACC |
StCRK21 | Soltu.DM.02G019660.1 | Chr2 | 9 799 | 2 172 | TTCAGGCCAAGAGAGACTTC TTTCACTGAAAATTGCCCCTGC |
StCRK22 | Soltu.DM.02G019670.1 | Chr2 | 5 196 | 1 677 | AGGGCCAGCATTCTATATGC TGCCTCATTTCGTGATGAACC |
StCRK23 | Soltu.DM.02G019690.1 | Chr2 | 7 277 | 2 067 | TGAGTTTTGCTTGGTTAAGCTGG TGCCATGGTTGGTCTATCAG |
StCRK24 | Soltu.DM.11G001100.1 | Chr11 | 4 079 | 1 929 | GCACTAAGTTTGCTGGTACC CTTGGTGTTCTTGATTCTGTGC |
StCRK25 | Soltu.DM.11G001180.1 | Chr11 | 4 053 | 1 920 | TGAAATAATCAGTGGACGGAGG CATGCTTGGCCTAAGATTTGG |
StCRK26 | Soltu.DM.12G006670.1 | Chr12 | 3 276 | 1 749 | AGGCTATCAAGAAGGTCAAGTC ACGTTGCTTGTTTCTTCGTATC |
表2
StCRKs蛋白家族理化信息
蛋白名称 Protein name | 氨基酸总数量 Amino acid | 等电点 Isoelectric point | 分子质量 Molecular weight /kDa | 消光系数 Extinction coefficients | 不稳定系数 Instability index | 亲水系数 Hydropathicity |
---|---|---|---|---|---|---|
StCRK9 | 564 | 7.82 | 62.26 | 57 270 | 31.97 | 0.002 |
StCRK10 | 645 | 8.56 | 71.37 | 68 145 | 33.58 | -0.116 |
StCRK11 | 620 | 8.20 | 68.97 | 67 810 | 35.73 | -0.133 |
StCRK12 | 467 | 7.93 | 51.76 | 53 455 | 37.46 | -0.332 |
StCRK13 | 462 | 8.93 | 51.46 | 52 870 | 36.36 | -0.129 |
StCRK14 | 622 | 8.38 | 69.16 | 61 155 | 31.01 | -0.134 |
StCRK15 | 654 | 8.71 | 72.94 | 73 200 | 39.24 | -0.154 |
StCRK16 | 580 | 8.50 | 64.16 | 69 635 | 35.85 | -0.097 |
StCRK17 | 645 | 7.82 | 71.43 | 68 270 | 33.70 | -0.140 |
StCRK18 | 561 | 8.55 | 62.77 | 46 730 | 43.34 | -0.094 |
StCRK19 | 673 | 5.95 | 75.43 | 67 240 | 53.34 | -0.161 |
StCRK20 | 645 | 6.15 | 71.76 | 55 655 | 42.58 | -0.195 |
StCRK21 | 723 | 5.88 | 80.18 | 67 045 | 34.84 | -0.252 |
StCRK22 | 558 | 6.44 | 62.13 | 44 975 | 45.53 | -0.191 |
StCRK23 | 688 | 5.97 | 76.55 | 64 260 | 40.15 | -0.164 |
StCRK24 | 642 | 8.37 | 71.15 | 69 635 | 42.51 | -0.191 |
StCRK25 | 639 | 8.79 | 71.05 | 76 750 | 35.97 | -0.205 |
StCRK26 | 582 | 7.19 | 66.20 | 53 705 | 45.87 | -0.196 |
1 | PANDEY S.Plant receptor-like kinase signaling through heterotrimeric G-proteins[J].Journal of Experimental Botany,2020,71(5):1742-1751. |
2 | LIANG X X, ZHOU J M.Receptor-like cytoplasmic kinases:central players in plant receptor kinase-mediated signaling[J].Annual Review of Plant Biology,2018,69:267-299. |
3 | SHIU S H, BLEECKER A B.Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(19):10763-10768. |
4 | SHIU S H, BLEECKER A B.Expansion of the receptor-like kinase/pelle gene family and receptor-like proteins in Arabidopsis [J].Plant Physiology,2003,132(2):530-543. |
5 | CHEN Z X.A superfamily of proteins with novel cysteine-rich repeats[J].Plant Physiology,2001,126(2):473-476. |
6 | BOURDAIS G, BURDIAK P, GAUTHIER A,et al.Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress[J].PLoS Genetics,2015,11(7):e1005373. |
7 | HUNTER K, KIMURA S, ROKKA A,et al.CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1[J].Plant Physiology,2019,180(4):2004-2021. |
8 | CHEN D H, WU J, ZHAO M,et al.A novel wheat cysteine-rich receptor-like kinase gene CRK41 is involved in the regulation of seed germination under osmotic stress in Arabidopsis thaliana [J].Journal of Plant Biology,2017,60(6):571-581. |
9 | LI X Y, ZHAO J, SUN Y H,et al. Arabidopsis thaliana CRK41 negatively regulates salt tolerance via H2O2 and ABA cross-linked networks[J].Environmental and Experimental Botany,2020,179:104210. |
10 | LU K, LIANG S, WU Z,et al.Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase,CRK5,enhances abscisic acid sensitivity and confers drought tolerance[J].Journal of Experimental Botany,2016,67(17):5009-5027. |
11 | IDÄNHEIMO N, GAUTHIER A, SALOJÄRVI J,et al.The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress[J].Biochemical and Biophysical Research Communications,2014,445(2):457-462. |
12 | WRZACZEK M, BROSCHÉ M, SALOJÄRVI J,et al.Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis [J].BMC Plant Biology,2010,10:95. |
13 | YADETA K A, ELMORE J M, CREER A Y,et al.A cysteine-rich protein kinase associates with a membrane immune complex and the cysteine residues are required for cell death[J].Plant Physiology,2017,173(1):771-787. |
14 | CHEN K G, DU L Q, CHEN Z X.Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis [J].Plant Molecular Biology,2003,53(1/2):61-74. |
15 | YEH Y H, CHANG Y H, HUANG P Y,et al.Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J].Frontiers in Plant Science,2015,6:322. |
16 | ACHARYA B R, RAINA S, MAQBOOL S B,et al.Overexpression of CRK13,an Arabidopsis cysteine-rich receptor-like kinase,results in enhanced resistance to Pseudomonas syringae [J].The Plant Journal,2007,50(3):488-499. |
17 | RAYAPURAM C, JENSEN M K, MAISER F,et al.Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley[J].Molecular Plant Pathology,2012,13(2):135-147. |
18 | LI T G, ZHANG D D, ZHOU L,et al.Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers Verticillium wilt resistance in Gossypium barbadense [J].Frontiers in Plant Science,2018,9:1266. |
19 | GU J, SUN J W, LIU N,et al.A novel cysteine-rich receptor-like kinase gene,TaCRK2,contributes to leaf rust resistance in wheat[J].Molecular Plant Pathology,2020,21(5):732-746. |
20 | SAINTENAC C, CAMBON F, AOUINI L,et al.A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch[J].Nature Communications,2021,12(1):433. |
21 | WANG J H, WANG J J, LI J,et al.The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1[J].The Plant Journal,2021,108(5):1241-1255. |
22 | GUO F L, WU T C, SHEN F D,et al.The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against Rhizoctonia cerealis in wheat[J].Journal of Experimental Botany,2021,72(20):6904-6919. |
23 | PELAGIO-FLORES R, MUÑOZ-PARRA E, BARRERA-ORTIZ S,et al.The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses[J].Planta,2019,251(1):2. |
24 | 孙莹,林艺灵,赵鹏程,等.龙眼类受体蛋白激酶CRK家族全基因组鉴定及表达调控分析[J].热带作物学报,2019,40(10):1924-1937. |
SUN Y, LIN Y L, ZHAO P C,et al.Genome-wide identification and regulation of expression analysis of cysteine-rich receptor-like kinase in longan[J].Chinese Journal of Tropical Crops,2019,40(10):1924-1937. | |
25 | 张中起,王娇,靳炜,等.陆地棉CRK基因家族的鉴定及其表达分析[J].中国农业科学,2018,51(13):2442-2461. |
ZHANG Z Q, WANG J, JIN W, et al.Identification and expression analysis of CRK gene family in upland cotton[J].Scientia Agricultura Sinica,2018,51(13):2442-2461. | |
26 | ZUO C W, LIU H, LÜ Q Q,et al.Genome-wide analysis of the apple(Malus domestica) cysteine-rich receptor-like kinase(CRK) family:annotation,genomic organization,and expression profiles in response to fungal infection[J].Plant Molecular Biology Reporter,2020,38(1):14-24. |
27 | 刘河,朵虎,赵丹,等.梨CRK家族基因及其腐烂病菌侵染响应成员的鉴定[J].园艺学报,2020,47(5):963-973. |
LIU H,DUO H, ZHAO D,et al.Identification of CRK gene family in pear and its members in response to signals of Valsa pyri[J].Acta Horticulturae Sinica,2020,47(5):963-973. | |
28 | HUSSAIN A, ASIF N, PIRZADA A R,et al.Genome wide study of cysteine rich receptor like proteins in Gossypium sp.[J].Scientific Reports,2022,12(1):4885. |
29 | 刘锐涛,张颖,樊秀彩,等.植物类受体激酶 CRK 参与逆境胁迫应答的研究进展[J/OL].[2022-08-05].. |
LIU R T, ZHANG Y, FAN X C,et al.Progress on the function of plant cysteine-rich receptor-like kinase in response to biotic and abiotic stresses[J/OL].[2022-08-05].. | |
30 | 张卫娜,范艳玲,康益晨,等.对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J].作物学报,2020,46(5):680-689. |
ZHANG W N, FAN Y L, KANG Y C,et al.Genome wide identification and expression analysis of CRK gene family in response to fungal pathogen signals in potato[J].Acta Agronomica Sinica,2020,46(5):680-689. | |
31 | 孙莹.马铃薯StCRK1/2互作蛋白的筛选鉴定[D].呼和浩特:内蒙古农业大学,2021. |
SUN Y.Screening and identification of StCRK1/2 interacting proteins in Solanum tuberosum [D].Hohhot:Inner Mongolia Agricultural University,2021. | |
32 | TIAN L X, YANG J Q, HOU W J,et al.Molecular cloning and characterization of a P-glycoprotein from the diamondback moth,Plutella xylostella(Lepidoptera:Plutellidae)[J].International Journal of Molecular Sciences,2013,14(11):22891-22905. |
33 | MIYAKAWA T, MIYAZONO K I, SAWANO Y,et al.Crystal structure of ginkbilobin-2 with homology to the extracellular domain of plant cysteine-rich receptor-like kinases[J].Proteins,2009,77(1):247-251. |
34 | 田双慧,程赫,张洋,等.毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J].植物研究,2021,41(06):993-1005. |
TIAN S H, CHENG H, ZHANG Y,et al.Genome-wide Identification and Expressional Analysis of Carotenoid Cleavage Dioxygenases(CCD) Gene Family in Populus trichocarpa under Drought and Salt Stress[J].Bulletin of Botanical Research,2021,41(06):993-1005. | |
35 | 李冬梅,韩小强,于俊华,等.外源脱落酸缓解低温胁迫研究进展[J].现代农药,2016,15(4):1-5. |
LI D M, HAN X Q, YU J H,et al.Research advances in chilling resistance of exogenous abscisic acid[J].Modern Agrochemicals,2016,15(4):1-5. | |
36 | 熊炳平,雷泞菲,刘金渠,等.低温胁迫下常春藤对外源脱落酸的生理响应[J].北方园艺,2022(3):71-78. |
XIONG B P, LEI N F, LIU J Q,et al.Physiological response of ivy to exogenous abscisic acid under low temperature stress[J].Northern Horticulture,2022(3):71-78. |
[1] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StNPR4基因的克隆与功能分析[J]. 植物研究, 2022, 42(5): 821-829. |
[2] | 王雪莹, 王瑞琪, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨CNGC家族全基因组鉴定及胁迫响应分析[J]. 植物研究, 2022, 42(4): 613-625. |
[3] | 程赫, 田双慧, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨nsLTP基因家族全基因组水平鉴定及其表达特性分析[J]. 植物研究, 2022, 42(3): 412-423. |
[4] | 杨宇宁, 董昊, 董实伟, 王乃锐, 宋跃, 张含国, 李淑娟. 长白落叶松转录因子LobHLH34克隆及表达分析[J]. 植物研究, 2022, 42(1): 112-120. |
[5] | 赵佳明, 樊二勤, 刘轶, 王智, 王军辉, 曲冠证. 楸树CbuATX1,CbuATX1-like和CbuATX2基因克隆及生物信息学分析[J]. 植物研究, 2022, 42(1): 47-61. |
[6] | 彭淑萍, 董诚明, 朱畇昊. 响应内生菌侵染的两个地黄茉莉酸合成关键基因的克隆与表达分析[J]. 植物研究, 2021, 41(2): 294-301. |
[7] | 王文林, 陈海生, 郑树芳, 樊松乐, 王立丰, 谭秋锦, 覃振师, 黄锡云, 贺鹏, 汤秀华, 许鹏. 澳洲坚果MiMYB2基因克隆及结构与功能分析[J]. 植物研究, 2020, 40(6): 913-922. |
[8] | 董实伟, 杨宇宁, 王乃锐, 张含国, 李淑娟. 毛果杨固有无序蛋白质基因克隆及胁迫响应分析[J]. 植物研究, 2020, 40(4): 575-582. |
[9] | 王琪, 许志茹, 陈瑾元, 张双, 黄佳欢, 刘关君. 杨树重金属相关异戊二烯化植物蛋白(HIPPs)基因的鉴定及表达分析[J]. 植物研究, 2019, 39(6): 935-946. |
[10] | 白晓明, 董实伟, 杨宇宁, 宋跃, 张含国, 李淑娟. 长白落叶松过氧化氢酶LoCAT1基因克隆及表达分析[J]. 植物研究, 2019, 39(4): 539-546. |
[11] | 孙晓莎, 王遂, 赵曦阳, 曲冠证. 84K杨4CL3/4CL5基因克隆及生物信息学分析[J]. 植物研究, 2019, 39(4): 547-556. |
[12] | 李文静, 冯雨, 侯晓强, 孙艳香, 韩美玲, 李晓雪, 王勇, 向蓓蓓. 川西獐牙菜SmSLS2基因的克隆、生物信息学及表达分析[J]. 植物研究, 2019, 39(3): 431-440. |
[13] | 王恒涛, 邵婉璇, 徐舒浩, 曾凡锁. 水曲柳FmMUR5基因的克隆及表达模式的分析[J]. 植物研究, 2018, 38(6): 913-920. |
[14] | 王家啟, 张曦, 李莉. 白桦HD-Zip基因家族生物信息学及应答盐胁迫分析[J]. 植物研究, 2018, 38(6): 931-938. |
[15] | 龚道勇, 胡尚连, 曹颖, 卢学琴, 张庆波. 2个慈竹bZIP基因的克隆、生物信息学分析及其诱导表达[J]. 植物研究, 2018, 38(2): 268-277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||