植物研究 ›› 2021, Vol. 41 ›› Issue (3): 449-457.doi: 10.7525/j.issn.1673-5102.2021.03.016
张东1,2, 刘艳1(), 张晗1, 张子健1, 王洋1, 刘美岑1
收稿日期:
2020-01-14
出版日期:
2021-05-20
发布日期:
2021-03-24
通讯作者:
刘艳
E-mail:zgnly@163.com
作者简介:
张东(1993—),男,博士研究生,主要从事园艺植物种质资源保存及植物逆境生理研究。
基金资助:
Dong ZHANG1,2, Yan LIU1(), Han ZHANG1, Zi-Jian ZHANG1, Yang WANG1, Mei-Cen LIU1
Received:
2020-01-14
Online:
2021-05-20
Published:
2021-03-24
Contact:
Yan LIU
E-mail:zgnly@163.com
About author:
ZHANG Dong(1993—),male,PhD candidate,mainly engaged in the conservation of horticultural plant germplasm resources and the physiological study of plant stress.
Supported by:
摘要:
叶片结构在植物防御生物和非生物胁迫方面起着重要的作用,可通过合成、储存和分泌次生代谢产物提高植物抗性。以甘草幼苗为试材,采用盆栽控水自然干旱法,探讨叶片光合作用、气孔微形态和腺体形态对干旱胁迫的响应。结果表明:①随着干旱胁迫程度的加剧,叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均呈先升高后降低的趋势;其中胞间CO2浓度(Ci)在重度干旱胁迫(severe stress,SS)时迅速增高。②随着干旱胁迫程度的加剧,叶片总气孔密度和气孔开张比呈先增大后减小的趋势;而气孔开张宽度呈逐渐减小的趋势。③随着干旱胁迫程度的加剧,叶片上表皮和下表皮腺体密度总数整体上呈增大的趋势,腺体颜色随着干旱胁迫程度的加剧逐渐加深,形状出现不规则褶皱和内陷。总之,甘草叶片表面的腺体特征参与抗旱逆境调节,从而避免干旱胁迫对甘草植株的伤害;在SS下,胁迫程度加速了气孔细胞的程序性死亡(PCD),甘草幼苗失去抗旱能力。
中图分类号:
张东, 刘艳, 张晗, 张子健, 王洋, 刘美岑. 甘草叶片形态结构和光合作用对干旱胁迫的响应[J]. 植物研究, 2021, 41(3): 449-457.
Dong ZHANG, Yan LIU, Han ZHANG, Zi-Jian ZHANG, Yang WANG, Mei-Cen LIU. Response of Photosynthesis and Leaf Morphological Characteristics to Drought Stress in Glycyrrhiza uralensis[J]. Bulletin of Botanical Research, 2021, 41(3): 449-457.
表1
干旱胁迫下甘草叶片表皮气孔形态结构
材料 Material | 处理 Treatment | 上表皮密度 Stomatal density of upper epidermis (个·mm-2) | 下表皮密度 Stomatal density of lower epidermis (个·mm-2) | 上表皮开张比 Porosity opening ratio of upper epidermis(%) | 下表皮开张比 Porosity opening ratio of lower epidermis(%) | 上表皮开张宽度 Stomatal opening width of upper epidermis(μm) | 下表皮开张宽度 Stomatal opening width of lower epidermis(μm) |
---|---|---|---|---|---|---|---|
新叶 Young leaves | CK | 75.3±4.5b | 216.7±4.5ab | 46.0±1.0b | 34. 7±1.5b | 1.36±0.05b | 2.14±0.05a |
LS | 91.3±5.1a | 224±2.6a | 53. 7±1.5a | 48.0±2.0a | 1.72±0.04a | 1.74±0.05b | |
MS | 66.7±3.5bc | 203.7±3.5bc | 44.3±1.2b | 30.7±2.1b | 0.78±0.04c | 0.60±0.03c | |
SS | 61.7±4.7c | 180.7±3.1c | 38.3±1.5c | 13.7±1.5c | 0.58±0.03d | 0.52±0.01c | |
成熟叶 Mature leaves | CK | 71.3±4.5b | 260±3.0a | 68. 7±1.5a | 57.33±0.6b | 1.92±0.04a | 2.4±0.1a |
LS | 104.7±6.5a | 201.3±4.2b | 71.3±1.5a | 73.33±1.5a | 1.89±0.03a | 2.1±0.02b | |
MS | 87.7±2.5b | 142.3±1.5c | 30.7±2.5b | 51±1.0b | 1.15±0.05b | 0.77±0.03c | |
SS | 38.3±3.5c | 213.3±2.5b | 22.3±2.5c | 10.33±1.5c | 0.95±0.05c | 0.73±0.04c | |
衰老叶 Aging leaves | CK | 76.3±2.5a | 167.3±2.5a | 58±2.0b | 23.67±1.5b | 1.18±0.03b | 0.98±0.02a |
LS | 62.7±2.5b | 141.3±3.5b | 67.7±1.2a | 29±1.0a | 1.38±0.03a | 0.94±0.03a | |
MS | 46.3±3.5c | 173.7±2.5a | 21±2.6c | 12.33±1.5cd | 0.78±0.03c | 0.71±0.02bc | |
SS | 24.0±3.6d | 163.7±4.0a | 17.7±0.6c | 7.67±1.5d | 0.77±0.03c | 0.58±0.03c |
表2
干旱胁迫下甘草叶片表皮腺体分布
材料 Material | 处理 Treatment | 上表皮 Upper epidermis (ind.·mm-2) | 下表皮 Lower epidermis (ind.·mm-2) | 表皮 Epidermis (ind.·mm-2) |
---|---|---|---|---|
新叶 Young leaves | CK | 2.18±0.15c | 5.08±0.23c | 7.26±0.12c |
LS | 2.18±0.44c | 7.63±0.15ab | 9.81±0.58b | |
MS | 3.63±0.44b | 6.17±0.15c | 9.80±0.44b | |
SS | 5.16±0.38a | 8.35±0.15a | 13.51±0.52a | |
成熟叶 Mature leaves | CK | 2.98±0.44a | 4.79±0.58c | 7.77±0.58c |
LS | 3.50±0.15bc | 5.48±0.44a | 8.98±0.65bc | |
MS | 1.96±0.22b | 5.81±0.36c | 7.77±0.44c | |
SS | 1.16±0.30c | 7.63±0.22b | 8.79±0.22a | |
衰老叶 Aging leaves | CK | 0.87±0.15bc | 4.54±0.44b | 5.41±0.15b |
LS | 1.69±0.22b | 3.60±0.30c | 5.29±0.22b | |
MS | 1.23±0.15b | 3.85±0.22b | 5.08±0.29b | |
SS | 2.40±0.36a | 6.90±0.44a | 9.30±0.36a |
表3
干旱胁迫下甘草叶片表皮腺毛分布
材料 Material | 处理 Treatment | 上表皮 Upper epidermis (ind./mm2) | 下表皮 Lower epidermis (ind./mm2) | 表皮 Epidermis (ind./mm2) |
---|---|---|---|---|
新叶 Young leaves | CK | 5.81±0.44bc | 4.72±0.36c | 10.53±0.73c |
LS | 3.63±0.36c | 3.63±0.22c | 17.26±0.94b | |
MS | 11.98±0.58a | 10.89±0.58a | 22.88±0.91a | |
SS | 2.18±0.22c | 9.08±0.73ab | 11.26±0.58c | |
成熟叶 Mature leaves | CK | 3.99±0.29b | 5.08±0.51c | 9.08±0.36b |
LS | 1.09±0.15c | 5.45±0.44c | 6.54±0.29c | |
MS | 5.08±0.44b | 22.50±0.87a | 27.60±0.44a | |
SS | 9.80±0.80a | 17.79±0.94b | 27.60±0.80a | |
衰老叶 Aging leaves | CK | 5.08±0.36b | 5.08±0.51b | 10.17±0.15b |
LS | 9.80±0.22a | 2.54±0.29c | 12.35±0.22a | |
MS | 4.36±0.22b | 5.45±0.36b | 9.80±0.58b | |
SS | 1.45±0.15c | 8.35±0.65a | 9.80±0.44b |
1 | Jenks M A,Joly R J,Peters P J,et al.Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench[J].Plant Physiology,1994,105(4):1239-1245. |
2 | Riederer M,Schneider G.The effect of the environment on the permeability and composition of citrus leaf cuticles:Ⅱ.composition of soluble cuticular lipids and correlation with transport properties[J].Planta,1990,180(2):154-165. |
3 | Champagne A,Boutry M.Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species[J].Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics,2016,1864(8):1039-1049. |
4 | Chen G X,Komatsuda T,Ma J F,et al.A functional cutin matrix is required for plant protection against water loss[J].Plant Signaling & Behavior,2011,6(9):1297-1299. |
5 | Castillo L,Díaz M,González-Coloma A,et al.Clytostoma callistegioides(Bignoniaceae) wax extract with activity on aphid settling[J].Phytochemistry,2010,71(17-18):2052-2057. |
6 | Hansjakob A,Bischof S,Bringmann G,et al.Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner[J].New Phytologist,2010,188(4):1039-1054. |
7 | 魏志刚,王玉成.植物干旱胁迫响应机制[M].北京:科学出版社,2015. |
Wei Z G,Wang Y C.Response mechanism of drought stress in plants[M].Beijing:Science Press,2015. | |
8 | 傅书遐,傅坤俊.中国植物志[M].北京:科学出版社,1998:167-175. |
Fu S X,Fu K J.Flora of China[M].Beijing:Science Press,1998:167-175. | |
9 | 耿广琴,谢晓蓉.旱盐双重胁迫对乌拉尔甘草幼苗生理生化特性的影响[J].草业科学,2018,35(9):2166-2173. |
Geng G Q,Xie X R.Effect of drought and salt stress on the physiological and biochemical characteristics of Glycyrrhiza uralensis[J].Pratacultural Science,2018,35(9):2166-2173. | |
10 | 王妍,杨世海.双重胁迫对乌拉尔甘草种子萌发及幼苗生理特性的影响[J].中药材,2018,41(11):2507-2510. |
Wang Y,Yang S H.Effects of double stress on seed germination and seedling physiological characteristics of glycyrrhiza uralensis[J].Journal of Chinese Medicinal Materials,2018,41(11):2507-2510. | |
11 | 张晓佳,解植彩,张文晋,等.短小芽孢杆菌对盐胁迫下甘草生长及抗氧化系统的影响[J].时珍国医国药,2019,30(3):688-691. |
Zhang X J,Xie Z C,Zhang W J,et al.Effect of Bacillus pumilus on growth and antioxidant system of Glycyrrhiza uralensis under salt stress[J].Lishizhen Medicine and Materia Medica Research,2019,30(3):688-691. | |
12 | 沈步芳,李予霞,马淼,等.2种药用甘草种子对盐渍环境的萌发响应及其甘草酸含量变化[J].江苏农业科学,2018,46(10):111-116. |
Shen B F,Li Y X,Ma M,et al.Germination responses of two kinds of medicinal liquorice seeds to saline environments and changes of glycyrrhizic acid content[J].Jiangsu Agricultural Sciences,2018,46(10):111-116. | |
13 | 王建寰,张文晋,郎多勇,等.硅对盐胁迫下甘草非药用部位总黄酮、总皂苷积累动态的影响[J].世界科学技术-中医药现代化,2018,20(7):1251-1255. |
Wang J H,Zhang W J,Lang D Y,et al.Effects of silicon on the accumulation of total flavonoids and total Saponins of non-medicinal parts of Glvarrhiza uralensis Fisch.under salt stress[J].World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica,2018,20(7):1251-1255. | |
14 | 卡迪尔·阿布都热西提,刘晓,任坚毅,等.盐生植物胀果甘草和光果甘草对UV-B以及盐胁迫的不同响应[J].基因组学与应用生物学,2018,37(6):2527-2536. |
Abdulrashid K,Liu X,Ren J Y,et al.Different responses of halophytes plants Glycyrrhiza inflata Bat.and Glycyrrhiza glabra L.to UV-B radiation and salt stress[J].Genomics and Applied Biology,2018,37(6):2527-2536. | |
15 | 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2015:22-24. |
Bao S D.Soil agrochemical analysis[M].3rd ed.Beijing:China Agricultural Press,2015:22-24. | |
16 | 李柏年,高金城,陈茨珀.植物叶片扫描电镜样品制备[J].植物学通报,1988,5(2):119-121. |
Li B N,Gao J C,Chen C B.Preparation of SEM samples of plant leaves[J].Chinese Bulletin of Botany,1988,5(2):119-121. | |
17 | 王瑞丽,于贵瑞,何念鹏,等.气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例[J].生态学报,2016,36(8):2175-2184. |
Wang R L,Yu G R,He N P,et al.Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain[J].Acta Ecologica Sinica,2016,36(8):2175-2184. | |
18 | Hetherington A M,Ian Woodward F.The role of stomata in sensing and driving environmental change[J].Nature,2003,424(6951):901-908. |
19 | 冮慧欣,王嘉琪,黄春岩,等.8种绿化树种光合特性及叶片解剖结构比较[J].植物研究,2019,39(1):10-16. |
Jiang H X,Wang J Q,Huang C Y,et al.Photosynthetic characteristics and leaf anatomical structure of eight tree species[J].Bulletin of Botanical Research,2019,39(1):10-16. | |
20 | Geisler M,Nadeau J,Sack F D.Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation[J].Plant Cell,2000,12(11):2075-2086. |
21 | 张风娟,李健,杜成忠,等.不同甘蔗品种叶片气孔对水分胁迫的响应[J].广西植物,2014,34(6):821-827. |
Zhang F J,Li J,Du C Z,et al.Stomatal response to water stress in leaves of different sugarcane cultivars[J].Guihaia,2014,34(6):821-827. | |
22 | Ticha I.Photosynthetic characteristics during on togenesis of leaves.7.Stomata density and sizes[J].Photosynthetica,1982,16(3):375-471. |
23 | 徐萍,李进,吕海英,等.干旱胁迫下水杨酸对银沙槐子叶表皮气孔开度的影响[J].植物生理学报,2014,50(4):510-518. |
Xu P,Li J,Lv H Y,et al.Effect of Salicylic acid on stomata aperture of epidermis in Ammodendron argenteum cotyled under drought stress[J].Plant Physiology Journal,2014,50(4):510-518. | |
24 | 王孝威,段艳红,曹慧,等.水分胁迫对短枝型果树光合作用的非气孔限制[J].西北植物学报,2003,23(9):1609-1613. |
Wang X W,Duan Y H,Cao H,et al.The photosynthetic nonstomatal limitatoin of spur-apple yong trees under water stress[J].Acta Botanica Boreali-Occidentalia Sinica,2003,23(9):1609-1613. | |
25 | 陈倩倩,范阳阳,郝影宾,等.不同土壤水分含量对玉米气孔发育过程和蒸腾耗水量的影响[J].干旱地区农业研究,2011,29(3):75-79,95. |
Chen Q Q,Fan Y Y,Hao Y B,et al.Effects of different soil water content on stomata development and water consumption of maize[J].Agricultural Research in the Arid Areas,2011,29(3):75-79,95. | |
26 | 张晓艳,杨惠敏,侯宗东,等.土壤水分和种植密度对春小麦叶片气孔的影响[J].植物生态学报,2003,27(1):133-136. |
Zhang X Y,Yang H M,Hou Z D,et al.Stomatal densities and distributions of spring wheat leaves under different planting densities and soil moisture levels[J].Acta Phytoecologica Sinica,2003,27(1):133-136. | |
27 | 杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J].植物生态学报,2001,25(3):312-316. |
Yang H M,Wang G X.Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment[J].Acta Phytoecologica Sinica,2001,25(3):312-316. | |
28 | 赵姝丽,陈温福,徐正进.水分胁迫对水稻剑叶气孔特性的影响[J].华北农学报,2010,25(1):170-174. |
Zhao S L,Chen W F,Xu Z J.The effects of drought stress on stomatal characters of rice leaf[J].Acta Agriculturae Boreali-Sinica,2010,25(1):170-174. | |
29 | 齐红岩,刘洋,刘海涛.水分亏缺对番茄叶片气孔特性及叶绿体超微结构的影响[J].西北植物学报,2009,29(1):9-15. |
Qi H Y,Liu Y,Liu H T.Effect of water deficit on stomatal characteristics and ultrastructure of chloroplast in tomato leaves[J].Acta Botanica Boreali-Occidentalia Sinica,2009,29(1):9-15. | |
30 | 高彦萍,冯莹,马志军,等.水分胁迫下不同抗旱类型大豆叶片气孔特性变化研究[J].干旱地区农业研究,2007,25(2):77-79. |
Gao Y P,Feng Y,Ma Z J,et al.Stomatal character changes of soybean leaves under water stress[J].Agricultural Research in the Arid Areas,2007,25(2):77-79. | |
31 | 杨九艳,杨劼,杨明博,等.鄂尔多斯高原锦鸡儿属植物叶表皮特征及生态适应性[J].植物生态学报,2005,29(6):961-967. |
Yang J Y,Yang J,Yang M B,et al.Characteristics of the leaf epidermis of Caragana plants on the ordos plateau and their ecological adaptations[J].Acta Phytoecologica Sinica,2005,29(6):961-967. | |
32 | 杨九艳,杨劼,杨明博,等.5种锦鸡儿属植物渗透调节物质的变化[J].内蒙古大学学报:自然科学版,2005,36(6):677-682. |
Yang J Y,Yang J,Yang M B,et al.Changes of osmotic adjustment solute content of the 5 species in Caragana Genus[J].Acta Scientiarum Naturalium Universitatis Neimongol,2005,36(6):677-682. | |
33 | 宋玉霞,郭生虎,马洪爱.贺兰山15种旱生灌木叶表皮扫描电镜观察[J].西北植物学报,2003,23(7):1283-1287. |
Song Y X,Guo S H,Ma H A.Observation of leaf epidermis of 15 species shrubs in Helanshan mountain by SEM[J].Acta Botanica Boreali-Occidentalia Sinica,2003,23(7):1283-1287. | |
34 | Randhawa M A,Sahi S T,Ilyas M B,et al.Comparative assessment of density of glandular hairs,population and size of aperture of stomata in resistant and susceptible cultivars of chickpea to Ascochyta blight disease[J].Pakistan Journal of Botany,2009,41(1):121-129. |
35 | Galmés J,Medrano H,Flexas J.Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J].New Phytologist,2007,175(1):81-93. |
36 | 张志焕,韩敏,张逸,等.水分胁迫对不同抗旱性砧木嫁接番茄生长发育及水气交换参数的影响[J].中国农业科学,2017,50(2):391-398. |
Zhang Z H,Han M,Zhang Y,et al.Effect of water stress on development and H2O and CO2 exchange in leaves of tomato grafted with different drought resistant rootstocks[J].Scientia Agricultura Sinica,2017,50(2):391-398. | |
37 | 谢深喜,刘强,熊兴耀,等.水分胁迫对柑橘光合特性的影响[J].湖南农业大学学报:自然科学版,2010,36(6):653-657. |
Xie S X,Liu Q,Xiong X Y,et al.Effect of water stress on Citrus photosynthesis characteristic[J].Journal of Hunan Agricultural University:Natural Sciences,2010,36(6):653-657. | |
38 | Valladares F,Pearcy R W.Drought can be more critical in the shade than in the sun:a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Niño year[J].Plant,Cell & Environment,2002,25(6):749-759. |
39 | Ohashi Y,Nakayama N,Saneoka H,et al.Effects of drought stress on photosynthetic gas exchange,chlorophyll fluorescence and stem diameter of soybean plants[J].Biologia Plantarum,2006,50(1):138-141. |
[1] | 郝雪峰, 亢春霞, 裴雁曦, 金竹萍. 苜蓿体内H2S信号与Ca2+调节气孔运动的作用机制[J]. 植物研究, 2023, 43(2): 281-287. |
[2] | 李俊, 段雅萍, 蔡秀珍, 王婷, 潘柏含. 松属针叶角质层微形态特征在分类学中的应用[J]. 植物研究, 2022, 42(3): 341-351. |
[3] | 杜习武, 秦俊, 叶康, 胡永红, 陶懿伟, 彭勇政, 沈雁翔, 梁言, 曾丽. 淹水胁迫对星花玉兰及其品种光合特性的影响[J]. 植物研究, 2022, 42(3): 483-491. |
[4] | 魏斌, 李毅, 苏世平. 外源脯氨酸对自然干旱下白刺叶片气孔的影响[J]. 植物研究, 2022, 42(3): 492-501. |
[5] | 何凤, 杜红岩, 刘攀峰, 王璐, 庆军, 杜兰英. 干旱胁迫对杜仲叶片结构特征的影响[J]. 植物研究, 2021, 41(6): 947-956. |
[6] | 王孟珂, 田梦妮, 毕泉鑫, 刘肖娟, 于海燕, 王利兵. 基于气孔性状的文冠果种质资源抗旱性评价及抗旱资源筛选[J]. 植物研究, 2021, 41(6): 957-964. |
[7] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
[8] | 王芳, 陆志民, 王君, 张世凯, 李峪曦, 李绍臣, 张建秋, 杨雨春. 低温胁迫下红松与西伯利亚红松光合与气孔特性[J]. 植物研究, 2021, 41(2): 205-212. |
[9] | 于晓池, 杨桂娟, 董菊兰, 王军辉, 麻文俊, 张鹏. 梓属5个种对干旱胁迫的生理响应[J]. 植物研究, 2021, 41(1): 44-52. |
[10] | 赵春建, 李玉正, 关佳晶, 苏伟然, 田瑶, 王婷婷, 李申, 李春英. 东北红豆杉—无花果复合种植对两种植物生长和土壤酶活性影响[J]. 植物研究, 2020, 40(5): 679-685. |
[11] | 方紫雯, 张夏燕, 陶俊, 赵大球. 阿魏酸对凤丹干旱胁迫的缓解效应[J]. 植物研究, 2020, 40(3): 353-359. |
[12] | 乔滨杰, 王德秋, 高海燕, 李召珉, 葛丽丽, 丁文雅, 赵曦阳. 干旱胁迫下杨树无性系苗期光合与气孔形态变异研究[J]. 植物研究, 2020, 40(2): 177-188. |
[13] | 赵敏, 郝文颖, 宁心哲, 郝龙飞, 闫海霞, 牟亚男, 白淑兰. 红花尔基樟子松优良抗旱菌树组合的筛选[J]. 植物研究, 2020, 40(1): 133-140. |
[14] | 刘婷岩, 郝龙飞, 王庆成, 白淑兰. 不同栽植密度对斑叶稠李苗木培育质量的影响[J]. 植物研究, 2019, 39(6): 863-868. |
[15] | 及利, 韩姣, 王芳, 王君, 宋笛, 张丽杰, 祁永会, 杨雨春. 干旱胁迫对不同土壤基质下核桃楸幼苗的生理特性的影响[J]. 植物研究, 2019, 39(5): 722-732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||