[1] Zahn L M,Kong H Z,Leebens-Mack J H,et al.The evolution of the SEPALLATA subfamily of MADS-box genes,a preangiosperm origin with multiple duplications throughout angiosperm history[J].Genetics,2005,169(4):2209-2223. [2] 孙迎坤.山茶花MADS-box家族A类和C类基因克隆及功能分析[D].北京:中国林业科学研究院,2013.Sun Y K.Isolation and function analysis of class A and C genes of MADS-box family from Camellia javonica[D].Beijing:Chinese academy of Forestry,2013. [3] 钟军珺.榆叶梅花发育相关MADS-box基因克隆和表达模式研究[D].北京:北京林业大学,2016.Zhong J J.Isolation and expression pattern analysis of MADS-box genes related to flower development of flowering plum(Prunus triloba)[D].Beijing:Beijing Forestry University,2016. [4] 刘志雄,于先泥.日本晚樱同源异型基因PrseAP3的克隆及其在单瓣与重瓣花中的表达分析[J].华中农业大学学报,2012,31(5):578-583.Liu Z X,Yu X N.Cloning and expressing analysis of a floral homeotic gene PrseAP3 from Prunus lannesiana[J].Journal of Huazhong Agricultural University,2012,31(5):578-583. [5] Yanofsky M F,Ma H,Bowman J L,et al.The protein encoded by the Arabidopsis homeotic gene Agamous resembles transcription factors[J].Nature,1990,346(6279):35-39. [6] Dubois A,Raymond O,Maene M,et al.Tinkering with the C-function:a molecular frame for the selection of double flowers in cultivated roses[J].PLoS One,2010,5(2):e9288. [7] Sun Y K,Fan Z Q,Li X L,et al.The APETALA3 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication[J].Molecular Breeding,2014,33(4):821-834. [8] 朱高浦,李纪元,范正琪,等.重瓣茶花"红十八学士"MADS-box家族B-function基因序列分析与原核表达[J].热带作物学报,2012,33(6):1077-1083.Zhu G P,Li J Y,Fan Z Q,et al.Sequence analysis and recombinant protein expression of B-function MADS-box gene involved in double flower formation in Camellia japonica ‘Hong Shibaxueshi’[J].Chinese Journal of Tropical Crops,2012,33(6):1077-1083. [9] 隋娟娟,李晓昕,杨秋燕,等.重瓣百合LiSEP3基因克隆与表达分析[J].南京林业大学学报:自然科学版,2017,41(1):42-48.Sui J J,Li X X,Yang Q Y,et al.Cloning and expression analysis of gene LiSEP3 in double lily[J].Journal of Nanjing Forestry University:Natural Science Edition,2017,41(1):42-48. [10] 李合生.现代植物生理学:2版[M].北京:高等教育出版社,2006.Li H S.Modern plant physiology:2nd ed[M].Beijing:Higher Education Press,2006. [11] 何崇单,蔡雨蒙,李萌,等.基于银杏花芽3个分化时期转录组测序的相关基因筛选与表达分析[J].园艺学报,2018,45(8):1479-1490.He C D,Cai Y M,Li M,et al.Screening and expression analysis of related genes based on transcriptome sequencing of ginkgo flower buds at three differentiation stages[J].Acta Horticulturae Sinica,2018,45(8):1479-1490. [12] 李太强,刘雄芳,万友名,等.基于高通量测序的极小种群野生植物长梗杜鹃转录组分析[J].植物研究,2017,37(6):825-834.Li T Q,Liu X F,Wan Y M,et al.Transcriptome analysis for Rhododendron longipedicellatum(plant species with extremely small populations) based on high throughput sequencing[J].Bulletin of Botanical Research,2017,37(6):825-834. [13] 孟亚南,张琳,刘召强,等.荷花转录组测序及花青素苷合成相关基因表达分析[J].西南林业大学学报,2018,38(2):61-69.Meng Y N,Zhang L,Liu Z Q,et al.Transcriptome sequencing and expression analysis of anthocyanin synthesis related genes in lotus[J].Journal of Southwest Forestry University,2018,38(2):61-69. [14] 姚运法,张少平,练冬梅,等.黄秋葵花和果荚转录组测序及类黄酮代谢差异表达分析[J].西北植物学报,2018,38(11):2000-2009.Yao Y F,Zhang S P,Lian D M,et al.Transcriptome sequencing and differential expression analysis of flavonoid metabolism in flowers and fruits of okra[J].Acta Botanica Boreali-Occidentalia Sinica,2018,38(11):2000-2009. [15] 孙瑞芬,张艳芳,郭树春,等.基于RNA-Seq技术的盐胁迫向日葵转录组信息分析[J].分子植物育种,2015,13(12):2736-2742.Sun R F,Zhang Y F,Guo S C,et al.Analysis on transcriptome of sunflower under salt stress based on RNA-Seq technology[J].Molecular Plant Breeding,2015,13(12):2736-2742. [16] 董丽君,孟宪红,孔杰,等.基于转录组分析筛选凡纳滨对虾低温胁迫下的差异表达基因[J].中国水产科学,2019,26(1):161-171.Dong L J,Meng X H,Kong J,et al.Screening of differentially expressed genes related to the cold tolerance in Litopenaeus vannamei based on high-throughput transcriptome se-quencing[J].Journal of Fishery Sciences of China,2019,26(1):161-171. [17] Anders S,Huber W.Differential expression analysis for sequence count data[J].Genome Biology,2010,11(10):R106. [18] Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method[J].Methods,2001,25(4):402-408. [19] 熊阳阳,王昌命,王锦.基于RNA-seq的铁线莲转录组信息分析[J/OL].分子植物育种,2018:1-9[2019-01-16].http://kns.cnki.net/kcms/detail/46.1068.S.20180906.0944.004.html.Xiong Y Y,Wang C M,Wang J.RNA-seq based transcriptome information analysis of clematis[J/OL].Molecular Plant Breeding,2018:1-9[2019-01-16].http://kns.cnki.net/kcms/detail/46.1068.S.20180906.0944.004.html. [20] Kanehisa M,Araki M,Goto S,et al.KEGG for linking genomes to life and the environment[J].Nucleic Acids Research,2008,36(S1):480-484. [21] Trapnell C,Williams B A,Pertea G,et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J].Nature Biotechnology,2010,28(5):511-515. [22] 马月萍,戴思兰.高等植物成花分子机理的研究进展[J].分子植物育种,2007,5(S1):21-28.Ma Y P,Dai S L.Research progress in the molecular mechanisms of flowering in higher plants[J].Molecular Plant Breeding,2007,5(S1):21-28. [23] 袁重要,周岩,李鹏,等.高等观赏植物花器官发育的分子研究进展[J].福建林业科技,2013,40(4):219-224.Yuan Z Y,Zhou Y,Li P,et al.Advances in molecular research of floral organ development of higher ornamental plant[J].Journal of Fujian Forestry Science and Technology,2013,40(4):219-224. |