1. Zhu J K. Plant salt tolerance[J]. Trends in Plant Science,2001,6(2):66-71.
2. Hasegawa P M,Bressan R A,Zhu J K,et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
3. Sahu B B,Shaw B P. Isolation,identification and expression analysis of salt-induced genes in Suaeda maritima,a natural halophyte,using PCR-based suppression subtractive hybridization[J]. BMC Plant Biology,2009,9:69.
4. Ventura Y,Eshel A,Pasternak D,et al. The development of halophyte-based agriculture:past and present[J]. Annals of Botany,2014,115(3):529-540.
5. 郗金标,张福锁,毛达如,等. 新疆盐生植物群落物种多样性及其分布规律的初步研究[J]. 林业科学,2006,42(10):6-12.Xi J B,Zhang F S,Mao D R,et al. Species diversity and distribution of halophytic vegetation in Xinjiang[J]. Scientia Silvae Sinicae,2006,42(10):6-12.
6. Kumari S,Sabharwal V P N,Kushwaha H R,et al. Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. [J]. Functional & Integrative Genomics,2009,9(1):109-123.
7. Xie Q,Niu J,Xu X L,et al. De novo assembly of the Japanese lawngrass(Zoysia japonica Steud.) root transcriptome and identification of candidate unigenes related to early responses under salt stress[J]. Frontiers in Plant Science,2015,6:610.
8. Jin H X,Dong D K,Yang Q H,et al. Salt-responsive transcriptome profiling of Suaeda glauca via RNA sequencing[J]. PLoS One,2016,11(3):e0150504.
9. 杜驰,张冀,张富春. 盐胁迫诱导盐穗木Rev1、Rev3基因的表达分析[J]. 植物研究,2017,37(2):211-215,226.Du C,Zhang J,Zhang F C. Expression analysis of Rev1 and Rev3 of Halostachys caspica under salt stress[J]. Bulletin of Botanical Research,2017,37(2):211-215,226.
10. Türkan I,Demiral T. Recent developments in understanding salinity tolerance[J]. Environmental and Experimental Botany,2009,67(1):2-9.
11. Deinlein U,Stephan A B,Horie T,et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science,2014,19(6):371-379.
12. Benhassaine-kesri G,Aid F,Demandre C,et al. Drought stress affects chloroplast lipid metabolism in rape(Brassica napus) leaves[J]. Physiologia Plantarum,2002,115(2):221-227.
13. Konova I V,Sergeeva Y E,Galanina L A,et al. Lipid synthesis by Geomyces pannorum under the impact of stress factors[J]. Microbiology,2009,78(1):42-47.
14. Miled D D B,Zarrouk M,Chérif A. Sodium chloride effects on lipase activity in germinating rape seeds[J]. Biochemical Society Transactions,2000,28(6):899-902.
15. Stitt M,Sulpice R,Keurentjes J. Metabolic networks:how to identify key components in the regulation of metabolism and growth[J]. Plant Physiology,2010,152(2):428-444.
16. Ritala A,Dong L M,Imseng N,et al. Evaluation of tobacco(Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol,the first committed step in terpenoid indole alkaloid pathway[J]. Journal of Biotechnology,2014,176:20-28.
17. Li C Y,Leopold A L,Sander G W,et al. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway[J]. BMC Plant Biology,2013,13(1):155.
18. 赵航,贾富强,张富春,等. 盐胁迫下盐穗木差异表达基因的转录组信息分析[J]. 生物信息学,2014,12(2):90-98.Zhao H,Jia F Q,Zhang F C,et al. The transcriptome information analysis of differentially expressed genes of Halostachys caspica under salt stress[J]. Chinese Journal of Bioinformatics,2014,12(2):90-98.
19. 黎裕. 植物的渗透调节与其它生理过程的关系及其在作物改良中的应用[J]. 植物生理学通讯,1994,30(5):377-383.Li Y. The relationship between osmotic adjustment and other physiological processes and its application in crop improvement[J]. Plant Physiology Communications,1994,30(5):377-383.
20. Hanson A D,Nelsen C E,Pedersen A R,et al. Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance[J]. Crop Science,1979,19(4):489-493.
21. Patakas A,Nikolaou N,Zioziou E,et al. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines[J]. Plant Science,2002,163(2):361-367.
22. 王娟,李德全. 逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J]. 植物学通报,2001,18(4):459-465.Wang J,Li D Q. The accumulation of plant osmoticum and activated oxygen metabolism under stress[J]. Chinese Bulletin of Botany,2001,18(4):459-465.
23. Caprioli M,Katholm A K,Melone G,et al. Trehalose in desiccated rotifers:a comparison between a bdelloid and a monogonont species[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2004,139(4):527-532.
24. Zhang H M,Murzello C,Sun Y,et al. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis(GB03)[J]. Molecular Plant-Microbe Interactions,2010,23(8):1097-1104.
25. Suzuki N,Koussevitzky S,Mittler R,et al. ROS and redox signalling in the response of plants to abiotic stress[J]. Plant,Cell & Environment,2012,35(2):259-270.
26. Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
27. Jaleel C A,Riadh K,Gopi R,et al. Antioxidant defense responses:physiological plasticity in higher plants under abiotic constraints[J]. Acta Physiologiae Plantarum,2009,31(3):427-436.
28. Chen S,Polle A. Salinity tolerance of Populus[J]. Plant Biology,2010,12(2):317-333.
29. Vaidyanathan H,Sivakumar P,Chakrabarty R,et al. Scavenging of reactive oxygen species in NaCl-stressed rice(Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties[J]. Plant Science,2003,165(6):1411-1418. |