欢迎访问《植物研究》杂志官方网站,今天是 分享到:

植物研究 ›› 2015, Vol. 35 ›› Issue (3): 397-405.doi: 10.7525/j.issn.1673-5102.2015.03.012

• 论文 • 上一篇    下一篇

协同ICESat/GLAS和MISR数据估算小兴安岭地区森林地上生物量

吴迪;范文义   

  1. 东北林业大学,哈尔滨 150040
  • 出版日期:2015-05-20 发布日期:2015-06-24
  • 基金资助:
     

Synergistic Use of ICESat/GLAS and MISR Data for Estimating Forest Aboveground Biomass

WU Di;FAN Wen-Yi   

  1. Northeast Forestry University,Harbin 150040
  • Online:2015-05-20 Published:2015-06-24
  • Supported by:
     

摘要: 大光斑激光雷达ICESat/GLAS波形数据包含大量的地物垂直结构信息,如森林垂直断面、地形等。这些信息与森林地上生物量具有很强的相关性。本研究在雷达波形数据处理的基础上,提取波形参数,分别用线性逐步回归模型和Erf-BP神经网络模型建立波形参数与森林地上生物量的关系式。使用Erf-BP神经网络模型计算研究区域内GLAS光斑点的生物量,协同多角度光学遥感数据MISR应用随机森林机器学习方法构建从点到面的空间尺度生物量扩展模型,最后用样地数据对模型反演的生物量结果进行检验。研究结果表明Erf-BP神经网络模型预测能力(P=0.965,RMSE=3.81 t·ha-1)优于线性逐步回归模型(P=0.86,RMSE=4.54 t·ha-1);空间尺度扩展模型预测精度P=0.81,RMSE=2.39 t·ha-1,反演的森林地上生物量估计值范围在0~144.4 t·ha-1,平均地上生物量估计值为59.28 t·ha-1,用样地数据检验模型的反演结果(R2=0.72,RMSE=8.98 t·ha-1),估计值与实际值较为接近。研究实现使用少量实测数据获取大尺度、高精度森林地上生物量的目的,为森林资源调查、生态研究及碳循环研究提供基础。

关键词: 生物量, ICESat/GLAS, MISR

Abstract: Large footprint lidar ICESat/GLAS data contain lots of vertical structure information of ground including forest vertical profile and terrain, and these parameters have high correlation with above ground biomass. Based on waveform data process, we extracted waveform parameters, and used linear stepwise regression model and Erf-BP neural network model to set up the relation between waveform parameters and forest above ground biomass, respectively. We used the Erf-BP neural network model and waveform data of GLAS to inverse the biomass of GLAS footprints. We used a machine learning approach named random forests and the MISR data to build biomass model to extend point to planar and validated the accuracy of this model with the field measured data from plots. The prediction accuracy of Erf-BP neural network model (P=0.965, RMSE=3.81 t·ha-1) was better than that of the linear stepwise regression model (P=0.86, RMSE=4.54 t·ha-1). The predicting precision of the biomass spatial extensive model was good (P=0.81, RMSE=2.39 t·ha-1), the range of inverse biomass in research area was 0-144.4 t·ha-1, and the mean of the biomass was 59.28  t·ha-1. The retrieval precision verified by sample data was high (R2=0.72, RMSE=8.98 t·ha-1). The estimation was close to real value. Therefore, using few field measurement data to inverse forest ABG in large scale and high precision could provide an effective approach for forestry inventory, ecology research and carbon investigation.

Key words: biomass, ICESat/GLAS, MISR

中图分类号: