欢迎访问《植物研究》杂志官方网站,今天是 分享到:

植物研究 ›› 2015, Vol. 35 ›› Issue (4): 618-622.doi: 10.7525/j.issn.1673-5102.2015.04.022

• 论文 • 上一篇    下一篇

俄罗斯大果沙棘人工林生物量遥感评估与分析

王海波;辛颖;赵雨森*   

  1. 东北林业大学林学院,哈尔滨 150040
  • 出版日期:2015-07-20 发布日期:2016-03-09
  • 基金资助:
     

Remote Sensing Evaluation and Analysis of Hippophae rhamnoide Plantation Biomass

WANG Hai-Bo;XIN Ying;ZHAO Yu-Sen*   

  1. College of Forestry,Northeast Forestry University,Harbin 150040
  • Online:2015-07-20 Published:2016-03-09
  • Supported by:
     

摘要: 以2011年的Landsat TM为主要遥感数据,借助于RS和GIS技术完成对俄罗斯大果沙棘人工林生物量进行估侧。结果表明:植被指数和生物量的一元线性回归分析模型中,比值植被指数(RVI)和归一化植被指数(NDVI)与俄罗斯大果沙棘具有较高的相关性,相关系数(R2)分别为0.908 6和0.868 5;基于植被指数和生物量的多元线性回归分析模型中,相关系数(R2)为0.909,经过模型检验,多元回归遥感植被指数模型的精度要高于一元遥感植被指数的精度,但是基于遥感指数模型预测生物量值比理论生物量值偏高。

关键词: 俄罗斯大果沙棘, 人工林生物量, 遥感, 植被指数

Abstract: Weestimated Hippophae rhamnoide plantation biomass using satellite images of Landsat TM(2011)based on RS and GIS. In one-dimensional linear regression analysis models,the NDVI-based and RVI-based simple linear model were the optimal model for estimating biomasswith the coefficient correlation(R2) of 0.908 6 and 0.868 5, respectively. The multiple regression model established by four kinds of VI could be used for estimating forest biomass with the coefficient of determination(R2) of 0.909. Themultivariable linear regression models were better than one-dimensional linear regression analysis models, and the predicted biomass based on regression analysis models was higher than the theoretical biomass.

Key words: Hippophae rhamnoide, plantation biomass, vegetation index(VI), remote sensing, vegetation index

中图分类号: