植物研究 ›› 2025, Vol. 45 ›› Issue (2): 241-253.doi: 10.7525/j.issn.1673-5102.2025.02.010
• 研究论文 • 上一篇
郭玉伟1, 梁晶2, 伍海兵2, 周传杰1, 孙琳琳1, 王志保1(), 李晓茹1, 陈祥凤1, 李木兰1
收稿日期:
2024-11-20
出版日期:
2025-03-20
发布日期:
2025-04-04
通讯作者:
王志保
E-mail:1157842491@qq.com
作者简介:
郭玉伟(1999—),女,硕士研究生,主要从事森林生态研究。
基金资助:
Yuwei GUO1, Jing LIANG2, Haibing WU2, Chuanjie ZHOU1, Linlin SUN1, Zhibao WANG1(), Xiaoru LI1, Xiangfeng CHEN1, Mulan LI1
Received:
2024-11-20
Online:
2025-03-20
Published:
2025-04-04
Contact:
Zhibao WANG
E-mail:1157842491@qq.com
摘要:
为探明鲁西黄泛平原不同林龄杨树(Populus)人工林生态系统碳储量与环境因子的关系,揭示不同林龄杨树人工林的固碳机制,该研究采用野外踏查和室内分析的方法,对鲁西黄泛平原草地(CK)和4个不同林龄(10、30、40、50 a)杨树人工林的乔木层、草本层、凋落物层、土壤层碳储量分布格局和影响因素进行研究。结果表明:随林龄增长杨树人工林乔木层和凋落物层的生物量占比逐渐上升,草本层的生物量占比逐渐下降,其中乔木层的生物量占总生物量比值最大(93.21%~96.17%),凋落物层次之(3.99%~3.20%),草本层最小(2.84%~0.63%)。杨树人工林碳含量平均值为乔木层50 a最高(420.40 g?kg-1),草本层10 a最高(365.86 g?kg-1),凋落物层30 a最高(398.67 g?kg-1),均显著高于各龄组,土壤层碳含量随林龄增长显著上升。随林龄增长杨树人工林碳储量整体呈增加趋势,由高到低依次为乔木层(975.81 t?hm-2)、土壤层(275.06 t?hm-2)、凋落物层(38.01 t?hm-2)、草本层(19.19 t?hm-2);乔木层和土壤层是杨树人工林碳储量的主要组成部分,占总碳储量的95.31%~97.46%。相关性分析和冗余分析表明,影响杨树人工林碳储量的关键因子为树高(H)、土壤有机质(SOM)、胸径(DBH)和林分密度(SD)。研究结果可为鲁西黄泛平原杨树人工林碳汇功能研究及人工林经营管理策略制定提供理论基础和数据支持。
中图分类号:
郭玉伟, 梁晶, 伍海兵, 周传杰, 孙琳琳, 王志保, 李晓茹, 陈祥凤, 李木兰. 鲁西黄泛平原不同林龄杨树人工林碳储量分布格局及影响因素分析[J]. 植物研究, 2025, 45(2): 241-253.
Yuwei GUO, Jing LIANG, Haibing WU, Chuanjie ZHOU, Linlin SUN, Zhibao WANG, Xiaoru LI, Xiangfeng CHEN, Mulan LI. Ecosystem Carbon Storage Distribution and Influencing Factors in Different-aged Poplar Plantations in the Yellow River Floodplain in Western Shandong, China[J]. Bulletin of Botanical Research, 2025, 45(2): 241-253.
表1
试验地土壤理化性质
林龄 Age/a | 土壤容重 Soil bulk density /(g·cm-3) | 土壤含水量 Soil water content /% | 田间持水量 Field capacity /(cm3·cm-3) | 土壤孔隙度 Soil porosity /% | pH | 电导率 Electrical conductivity /(μs·cm-1) |
---|---|---|---|---|---|---|
CK | 1.53±0.02a | 5.14±0.27a | 0.25±0.01a | 47.43±0.60a | 8.40±0.02a | 129.87±25.02a |
10 | 1.48±0.01ab | 4.16±0.26b | 0.25±0.01a | 47.15±0.92a | 8.35±0.03a | 105.01±9.75a |
30 | 1.43±0.02c | 4.73±0.30ab | 0.27±0.01a | 47.58±0.61a | 8.04±0.04c | 106.79±14.32a |
40 | 1.47±0.01bc | 3.37±0.57c | 0.27±0.01a | 48.08±0.39a | 8.21±0.04b | 117.06±10.85a |
50 | 1.45±0.05bc | 4.93±0.58ab | 0.27±0.02a | 47.93±1.04a | 8.21±0.04b | 103.15±4.58a |
林龄 Age/a | 全碳 Total carbon /(g·kg-1) | 全氮 Total nitrogen /(g·kg-1) | 全磷 Total phosphorus /(g·kg-1) | 有机质 Organic matter content /(g·kg-1) | 速效钾 Available potassium /(mg·kg-1) | |
CK | 2.53±0.17d | 0.39±0.01a | 0.53±0.01a | 4.36±0.29d | 49.73±3.74a | |
10 | 2.12±0.09e | 0.32±0.01b | 0.46±0.00b | 3.59±0.21e | 43.57±1.00b | |
30 | 3.24±0.17c | 0.33±0.01b | 0.46±0.01b | 5.59±0.30c | 40.63±1.86b | |
40 | 3.80±0.14b | 0.37±0.03a | 0.45±0.01b | 7.70±0.08b | 51.10±2.21a | |
50 | 7.14±0.29a | 0.39±0.03a | 0.45±0.01b | 12.31±0.51a | 52.30±2.46a |
表2
样地基本概况
林龄 Age/a | 样方面积 Plot area/m2 | 林分密度 Stand density /(株·hm-2) | 胸径 Diameter at breast height/cm | 树高 Tree height/m | 林下植物 Understory plants |
---|---|---|---|---|---|
CK | 400 | — | — | — | 芦苇(Phragmites australis),狗尾草(Setaria viridis),鬼针草(Bidens pilosa)等 |
10 | 400 | 916.67±52.04 | 24.17±0.76 | 21.33±0.58 | 芦苇(Phragmites australis),鬼针草(Bidens pilosa),木贼(Equisetum hyemale)等 |
30 | 400 | 450.00±25.00 | 36.06±1.03 | 32.67±0.76 | 芦苇(Phragmites australis),葎草(Humulus scandens),木贼(Equisetum hyemale)等 |
40 | 400 | 391.67±14.43 | 37.67±0.76 | 35.09±1.01 | 芦苇(Phragmites australis),狗尾草(Setaria viridis),葎草(Humulus scandens)等 |
50 | 400 | 341.67±14.43 | 39.83±1.04 | 37.83±1.04 | 芦苇(Phragmites australis),木贼(Equisetum hyemale),葎草(Humulus scandens)等 |
表4
不同林龄杨树人工林乔木层、草本层、凋落物层碳质量分数
层次 Layer | 组分 Component | CK | 碳质量分数 Carbon mass fraction/(g·kg-1) | |||
---|---|---|---|---|---|---|
10 a | 30 a | 40 a | 50 a | |||
乔木层 Tree layer | 树干Stem | — | 466.92±10.91a | 421.41±15.08bc | 407.85±13.71c | 443.71±10.72ab |
树枝Branch | — | 403.15±6.62b | 372.49±2.61c | 435.54±4.06a | 448.44±5.26a | |
树叶Leaf | — | 423.46±12.5b | 393.49±7.21a | 435.24±11.12a | 431.22±9.96a | |
树根Root | — | 370.77±0.53c | 435.61±0.25a | 382.42±1.37b | 358.23±1.32d | |
草本层 Herb layer | 草茎Stem | 320.48±4.55c | 372.54±8.79a | 367.19±8.17ab | 355.15±6.75b | 333.51±8.91c |
草叶Leaf | 312.42±10.41b | 359.86±6.24a | 348.31±10.6a | 336.69±9.89b | 306.67±19.68b | |
草根Root | 324.15±2.00b | 365.64±3.98a | 352.40±7.74a | 328.86±4.31b | 332.24±4.94b | |
凋落物层 Litter layer | 314.18±6.68d | 333.35±10.78c | 398.67±2.66a | 379.48±5.83b | 385.07±5.63b |
1 | 熊志祥.东山国有林场森林碳储量及影响因素分析[J].绿色科技,2023,25(16):77-80. |
XIONG Z X.Analysis of forest carbon storage and influencing factors in Dongshan state-owned forest farm[J].Journal of Green Science and Technology,2023,25(16):77-80. | |
2 | 余蓉,项文化,宁晨,等.长沙市4种人工林生态系统碳储量与分布特征[J].生态学报,2016,36(12):3499-3509. |
YU R, XIANG W H, NING C,et al.Carbon storage and sequestration in four urban forest ecosystems in Changsha,Hunan[J].Acta Ecologica Sinica,2016,36(12):3499-3509. | |
3 | BO F.Forest carbon sink resource asset evaluation with case study of Fujian Province in China[J].Mathematical Problems in Engineering,2022,2022:7391493. |
4 | FANG J Y, GUO Z D, HU H F,et al.Forest biomass carbon sinks in east Asia,with special reference to the relative contributions of forest expansion and forest growth[J].Global Change Biology,2014,20(6):2019-2030. |
5 | 付玉杰,田地,侯正阳,等.全球森林碳汇功能评估研究进展[J].北京林业大学学报,2022,44(10):1-10. |
FU Y J, TIAN D, HOU Z Y,et al.Review on the evaluation of global forest carbon sink function[J].Journal of Beijing Forestry University,2022,44(10):1-10. | |
6 | 曾伟生.东北落叶松林碳储量生长模型研建及固碳能力分析[J].林业资源管理,2022(1):18-23. |
ZENG W S.Development of carbon growth models and analysis of carbon sequestration capacity for larch forest stands in the northeast of China[J].Forest Resources Management,2022(1):18-23. | |
7 | POST W M, EMANUEL W R, ZINKE P J,et al.Soil carbon pools and world life zones[J].Nature,1982,298(5870):156-159. |
8 | 李海奎.碳中和愿景下森林碳汇评估方法和固碳潜力预估研究进展[J].中国地质调查,2021,8(4):79-86. |
LI H K.Research advance of forest carbon sink assessment methods and carbon sequestration potential estimation under carbon neutral vision[J].Geological Survey of China,2021,8(4):79-86. | |
9 | 刘钰,张艳华,方升佐.株行距配置和无性系对杨树人工林碳储量的影响[J].森林与环境学报,2024,44(3):242-249. |
LIU Y, ZHANG Y H, FANG S Z.Effects of planting spacing configurations and clones on carbon storage in poplar plantations[J].Journal of Forest and Environment,2024,44(3):242-249. | |
10 | 王大卫,沈文星.中国主要树种人工乔木林碳储量测算及固碳潜力分析[J].南京林业大学学报(自然科学版),2022,46(5):11-19. |
WANG D W, SHEN W X.The carbon storage calculation and carbon sequestration potential analysis of the main artificial arboreal forest in China[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2022, 46(5):11-19. | |
11 | 廖国莉,段劼,贾忠奎,等.辽东地区不同林龄长白落叶松人工林生态系统碳储量分配特征[J].东北林业大学学报,2020,48(11):8-13. |
LIAO G L, DUAN J, JIA Z K,et al.Distribution characteristics of carbon storage in Larix olgensis plantation ecosystem of different ages in eastern Liaoning Province[J].Journal of Northeast Forestry University,2020,48(11):8-13. | |
12 | 吕梓晴,段爱国.不同产区杉木生物量与碳储量模型[J].林业科学,2024,60(2):1-11. |
LÜ Z Q, DUAN A G.Biomass and carbon storage model of Cunninghamia lanceolata in different production areas[J].Scientia Silvae Sinicae,2024,60(2):1-11. | |
13 | 李康杰,胡中岳,刘萍,等.广东省珠三角乔木林生物量碳储量评估[J].林业资源管理,2022(4):54-60. |
LI K J, HU Z Y, LIU P,et al.Evaluation on forest biomass and carbon storage in pearl river delta in Guangdong Province[J].Forest Resources Management,2022(4):54-60. | |
14 | 姜雨佳.临沂市三种人工林生物量与碳储量特征[D].泰安:山东农业大学,2023:24-29. |
JIANG Y J.Biomass and carbon storage characteristics of three types plantation in Linyi,Shandong[D].Tai’an:Shandong Agricultural University,2023:24-29. | |
15 | 安宇超,顾宇晨,张茜,等.长期氮添加对苏北杨树人工林碳储量的影响[J].水土保持研究,2024,31(2):27-32. |
AN Y C, GU Y C, ZHANG Q,et al.Effects of long-term nitrogen addition on carbon storage of poplar plantation in north of Jiangsu[J].Research of Soil and Water Conservation,2024,31(2):27-32. | |
16 | 王晓荣,胡兴宜,唐万鹏,等.不同林分密度杨树人工林的固碳释氧和积累营养物质研究[J].湖北林业科技,2020,49(3):1-4. |
WANG X R, HU X Y, TANG W P,et al.Study on carbon fixation,oxygen release and nutrient accumulation in poplar plantation with different stand densities[J].Hubei Forestry Science and Technology,2020,49(3):1-4. | |
17 | 鹿行起,白玉茹,于海蛟,等.杨树人工林不同栽培模式碳储量研究[J].内蒙古林业科技,2014,40(4):40-42. |
LU X Q, BAI Y R, YU H J,et al.Carbon storage of Populus spp.plantation with different cultivation modes[J].Journal of Inner Mongolia Forestry Science and Technology,2014,40(4):40-42. | |
18 | QUINTELA A, FERREIRA D, FABRES S,et al.A survey of organic carbon stocks in mineral soils of Eucalyptus globulus Labill.plantations under mediterranean climate conditions[J].Forests,2024,15(8):1335. |
19 | ZHANG Y H, TIAN Y, DING S H,et al.Growth,carbon storage,and optimal rotation in poplar plantations:a case study on clone and planting spacing effects[J].Forests,2020,11(8):842. |
20 | LIU S Q, BIAN Z, AN T Y,et al.Carbon pools of biomass and dead organic matter in typical forest ecosystems of Tibet:a new estimation based on the first forestry carbon sequestration monitoring undertaken in China[J].Land Degradation & Development,2021,32(10):2877-2891. |
21 | 刘诗琦,辛建华,贾黎明,等.山东菏泽杨树人工林碳储量和碳贮库特征[J].东北林业大学学报,2013,41(4):1-4. |
LIU S Q, XIN J H, JIA L M,et al.Carbon storage and characteristics of carbon pool of poplar plantations in Heze,Shandong Province,China[J].Journal of Northeast Forestry University,2013,41(4):1-4. | |
22 | 杨雨薇,何宝辉,韩学娇,等.林龄对毛白杨功能性状和林下土壤理化性质的影响及其耦合关系[J].植物研究,2023,43(6):857-867. |
YANG Y W, HE B H, HAN X J,et al.Effects of stand age on functional traits and understory soil physicochemical properties of Populus tomentosa and their coupling relationships[J].Bulletin of Botanical Research,2023,43(6):857-867. | |
23 | 周国逸.中国森林生态系统碳储量:生物量方程[M].北京:科学出版社,2018:45-46. |
ZHOU G Y.Carbon storage of Chinese forest ecosystems:biomass equations[M].Beijing:Science Press,2018:45-46. | |
24 | 杨丽丽,王彦辉,文仕知,等.六盘山四种森林生态系统的碳氮储量、组成及分布特征[J].生态学报,2015,35(15):5215-5227. |
YANG L L, WANG Y H, WEN S Z,et al.Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains,northwestern China[J].Acta Ecologica Sinica,2015,35(15):5215-5227. | |
25 | 付德刚,乔显娟,王新媛,等.林龄对黑松人工林植被层生物量分配的影响[J] .分子植物育种,2023,21(19):1-10. |
FU D G, QIAO X J, WANG X Y,et al.Effect of forest age on biomass allocation of the vegetation layer of Pinus thunbergii Parlatore artificial forest[J].Molecular Plant Breeding,2023,21(19):1-10. | |
26 | 李平,肖玉,杨洋,等.天津平原杨树人工林生态系统碳储量[J].生态学杂志,2014,33(3):567-574. |
LI P, XIAO Y, YANG Y,et al.Ecosystem carbon storage in poplar plantations of different stand ages in Tianjin Plain[J].Chinese Journal of Ecology,2014,33(3):567-574. | |
27 | 熊子蕙,王旭,杨怀,等.橡胶人工林碳储量变化及固碳潜力分析[J].热带亚热带植物学报,2024,31(2):1-9. |
XIONG Z H, WANG X, YANG H,et al.Analysis of carbon stock changes and carbon sequestration potential in rubber plantation[J].Journal of Tropical and Subtropical Botany,2024,31(2):1-9. | |
28 | 席本野.杨树根系形态、分布、动态特征及其吸水特性[J].北京林业大学学报,2019,41(12):37-49. |
XI B Y.Morphology,distribution,dynamic characteristics of poplar roots and its water uptake habits[J].Journal of Beijing Forestry University,2019,41(12):37-49. | |
29 | 鲁艺,牟长城,高旭,等.林型和林龄对嫩江沙地人工林生态系统碳储量影响规律研究[J].北京林业大学学报,2023,45(10):16-27. |
LU Y, MU C C, GAO X,et al.Effects of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land of northeastern China[J].Journal of Beijing Forestry University,2023,45(10):16-27. | |
30 | 王心茹,邢亚娟.环境因子及群落动态对植物物种多样性影响研究进展[J].世界生态学,2021,10(4):608-617. |
WANG X R, XING Y J.Research progress on the effects of environmental factors and community dynamics on plant species diversity[J].International Journal of Ecology,2021,10(4):608-617. | |
31 | 马雄忠,熊伟红,孙哲.南流江流域白花鬼针草生物量分配及其化学计量特征分析[J].植物研究,2024,44(6):852-862. |
MA X Z, XIONG W H, SUN Z.Analysis of biomass allocation and stoichiometric characteristics of Bidens alba in the Nanliu River Basin[J].Bulletin of Botanical Research,2024,44(6):852-862. | |
32 | 陈金磊,张仕吉,李雷达,等.亚热带不同植被恢复阶段林地凋落物层现存量和养分特征[J].生态学报,2020,40(12):4073-4086. |
CHEN J L, ZHANG S J, LI L D,et al.Stock and nutrient characteristics of litter layer at different vegetation restoration stages in subtropical region,China[J].Acta Ecologica Sinica,2020,40(12):4073-4086. | |
33 | 李玉凤,莫燕华,秦佳双,等.广西不同林龄马尾松人工林生态系统碳储量及其分配格局[J].广西科学,2024,31(2):346-356. |
LI Y F, MO Y H, QIN J S,et al.Carbon storage and distribution pattern of Pinus massoniana plantations ecosystem in different forest ages in Guangxi[J].Guangxi Sciences,2024,31(2):346-356. | |
34 | 洪滔,何晨阳,黄贝佳,等.不同林龄千年桐人工林的碳含量和碳储量及碳库分配格局[J].植物资源与环境学报,2021,30(1):9-16. |
HONG T, HE C Y, HUANG B J,et al.Carbon content,carbon storage and distribution pattern of carbon pool of Vernicia montana plantation with different stand ages[J].Journal of Plant Resources and Environment,2021,30(1):9-16 | |
35 | 孙虎,李凤日,孙美欧,等.松嫩平原杨树人工林生态系统碳储量研究[J].北京林业大学学报,2016,38(5):33-41. |
SUN H, LI F R, SUN M O,et al.Carbon storage of poplar plantations in Songnen Plain,northeastern China[J].Journal of Beijing Forestry University,2016,38(5):33-41. | |
36 | 周世杰,普军伟,黄佩,等.云南亚热带地区主要林地类型土壤碳含量变化及影响因素研究[J].林业科学研究,2024,37(1):63-72. |
ZHOU S J, PU J W, HUANG P,et al.Soil carbon changes and its influencing factors in major forest types in the subtropical area of Yunnan Province[J].Forest Research,2024,37(1):63-72. | |
37 | 程学刚.连作杨树人工林土壤有机碳储量与碳循环过程研究[D].泰安:山东农业大学,2016:1-13. |
CHENG X G.Effects of continuous cropping on soil organic carbon storage and carbon cycle process of Populus×euramericana cv.‘Neva’[D].Taian:Shandong Agricultural University,2016:1-13. | |
38 | JUSTINE M F, YANG W Q, WU F Z,et al.Dynamics of biomass and carbon sequestration across a chronosequence ofmasson pine plantations[J].Journal of Geophysical Research:Biogeosciences,2017,122(3):578-591. |
39 | 王华,苏樑,宋同清,等.广西不同林龄硬阔林生态系统碳储量及其分配格局[J].生态学杂志,2017,36(6):1465-1472. |
WANG H, SU L, SONG T Q,et al.Carbon storage and allocation in hardwood broad-leaved forests with different stand ages in Guangxi[J].Chinese Journal of Ecology,2017,36(6):1465-1472. | |
40 | 舒洋,向昌林,赵鹏武,等.红花尔基樟子松人工林碳储量及碳层分配特征[J].生态科学,2024,43(2):51-57. |
SHU Y, XIANG C L, ZHAO P W,et al.Carbon storage and carbon layer allocation of Pinus sylvestris var.mongolica plantation in Honghuaerji of Daxinganling Mountains[J].Ecological Science,2024,43(2):51-57. | |
41 | 顾宇晨,张茜,安宇超,等.苏北不同林龄杨树人工林碳储量时空分配格局[J].水土保持研究,2025,32(1):243-248. |
GU Y C, ZHANG Q, AN Y C,et al.Spatial and temporal distribution pattern of carbon storage in poplar plantations with different ages in northern Jiangsu Province[J].Research of Soil and Water Conservation,2025,32(1):243-248. | |
42 | 张涛,罗于洋,王树森,等.近自然经营方式对不同林龄油松人工林碳储量的影响[J].水土保持通报,2018,38(2):40-45. |
ZHANG T, LUO Y Y, WANG S S,et al.Effects of natural alike management on carbon storage in Pinus tabuliformis plantations under different forest age[J].Bulletin of Soil and Water Conservation,2018,38(2):40-45. | |
43 | 高述超,陈毅青,陈宗铸,等.海南岛森林生态系统碳储量及其空间分布特征[J].生态学报,2023,43(9):3558-3570. |
GAO S C, CHEN Y Q, CHEN Z Z,et al.Carbon storage and its spatial distribution characteristics of forest ecosystems in Hainan Island,China[J].Acta Ecologica Sinica,2023,43(9):3558-3570. | |
44 | 沈会涛,张韬,马文才,等.太行山东坡不同林龄杏树林碳储量及其分配特征[J].生态学报,2018,38(18):6722-6728. |
SHEN H T, ZHANG T, MA W C,et al.Carbon storage and its allocation pattern in Armeniaca vulgaris plantations at different ages on the eastern slope of Taihang Mountain[J].Acta Ecologica Sinica,2018,38(18):6722-6728. | |
45 | 高艳如,王军辉,麻文俊,等.不同种源和家系红皮云杉细根形态与生物量垂直分布特征[J].植物研究,2024,44(3):380-388. |
GAO Y R, WANG J H, MA W J,et al.Characteristics of fine root morphology and biomass vertical distribution from different provenances and families of Picea koraiensis [J].Bulletin of Botanical Research,2024,44(3):380-388. | |
46 | 高琳,张登山,龙怀玉,等.气候、植被及土壤因素交互作用对宁夏土壤有机碳的影响机制[J].生态学报,2023,43(24):10081-10091. |
GAO L, ZHANG D S, LONG H Y,et al.Interaction mechanism of climate,vegetation and soil factors on soil organic carbon at different soil depths in Ningxia[J].Acta Ecologica Sinica,2023,43(24):10081-10091. | |
47 | 安晓圆,陈辰,张德婧,等.杉木北带东区杉木人工林碳储量影响因素源解析[J].生态学杂志,2024,43(5):1477-1487. |
AN X Y, CHEN C, ZHANG D J,et al.The influencing factors of carbon storage in Chinese fir plantations in the eastern part of the northern extreme of Chinese fir distribution[J].Chinese Journal of Ecology,2024,43(5):1477-1487. |
[1] | 何昭鑫, 吴连峰, 王永喆, 顾云杰, 赵凤伟, 王兴昌, 王晓春. 大庆城区草地地上生物量时空格局及其与气候因子关系[J]. 植物研究, 2025, 45(1): 34-44. |
[2] | 马雄忠, 熊伟红, 孙哲. 南流江流域白花鬼针草生物量分配及其化学计量特征分析[J]. 植物研究, 2024, 44(6): 852-862. |
[3] | 高艳如, 王军辉, 麻文俊, 王福德, 安三平, 谷加存. 不同种源和家系红皮云杉细根形态与生物量垂直分布特征[J]. 植物研究, 2024, 44(3): 380-388. |
[4] | 夏娟, 孙旭东, 王娜, 李锐, 陈娟, 高国强. 岷江上游干旱河谷地区油松和岷江柏细根生物量和根长密度[J]. 植物研究, 2024, 44(2): 259-266. |
[5] | 陈志琪, 张海娜, 刘佳丽, 鲁向晖, 杨宝城. 氮添加对稀土尾砂地猴樟幼苗根系生长、生物量分配及非结构性碳水化合物的影响[J]. 植物研究, 2024, 44(1): 86-95. |
[6] | 杨雨薇, 何宝辉, 韩学娇, 时海香, 张贵民, 路兴慧. 林龄对毛白杨功能性状和林下土壤理化性质的影响及其耦合关系[J]. 植物研究, 2023, 43(6): 857-867. |
[7] | 许吉康, 何炎红, 刘婷岩, 郝龙飞, 张盛晰, 李赵毅. 砒砂岩区不同生态修复植被根际土壤微生态环境特征[J]. 植物研究, 2023, 43(4): 531-539. |
[8] | 令狐克念, 王姝. 不同生长阶段苘麻生物量分配对种群密度和土壤水分的响应[J]. 植物研究, 2023, 43(2): 272-280. |
[9] | 杨会肖, 徐放, 杨晓慧, 廖焕琴, 张卫华, 潘文. 不同水肥处理对尾叶桉苗木生长及生物量分配的影响[J]. 植物研究, 2022, 42(4): 667-676. |
[10] | 王莹, 徐宏波, 王洋, 王梦茜, 汪成忠, 尹原森, 孙雪, 周辉, 卓丽环. 5种景天属植物耐受重金属锌胁迫差异性研究[J]. 植物研究, 2021, 41(6): 982-992. |
[11] | 孙国语, 马晓雨, 易嘉欣, 张芳平, 张春华, 李开隆. 养分供给对黑青杨等杨树生长动态及养分分配的影响[J]. 植物研究, 2021, 41(5): 690-699. |
[12] | 王敏, 周润惠, 余飞燕, 董洪君, 陈聪琳, 喻静, 郝建锋. 不同林龄桉树人工林林下物种多样性和生物量的动态变化[J]. 植物研究, 2021, 41(4): 496-505. |
[13] | 商侃侃, 张希金, 宋坤. 上海辰山植物园不同生活型木本植物枝叶大小关系的比较[J]. 植物研究, 2020, 40(5): 641-647. |
[14] | 侯雪月, 邓俊杰, 姚志红, 黄寿臣, 李嘉哲, 茶新有, 马德志, 张荣沭. 木霉菌对芸芥生长相关生理指标的影响[J]. 植物研究, 2020, 40(3): 347-352. |
[15] | 赵喆, 金则新. 模拟氮沉降对夏蜡梅幼苗生长及非结构性碳水化合物的影响[J]. 植物研究, 2020, 40(1): 41-49. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||