植物研究 ›› 2025, Vol. 45 ›› Issue (1): 15-21.doi: 10.7525/j.issn.1673-5102.2025.01.003
收稿日期:
2024-08-08
出版日期:
2025-01-20
发布日期:
2025-01-23
通讯作者:
彭涛
E-mail:13938176372@139.com
作者简介:
李秀启(1975—),男,副研究员,主要从事高效农业及农业产业发展研究。
基金资助:
Xiuqi LI, Wenjing LI, Bing LI, Xingzhong XIAO, Tao PENG()
Received:
2024-08-08
Online:
2025-01-20
Published:
2025-01-23
Contact:
Tao PENG
E-mail:13938176372@139.com
摘要:
哌啶酸作为一种非蛋白质杂环氨基酸,是生物代谢产物生物合成的前体。在结构上,其六元环由5个碳原子和1个氮原子组成。它是一种来源于赖氨酸的环状氨基酸,近年来在植物研究中引起了人们的关注。该文总结了哌啶酸的发现、生物合成、生物功能、作用机制及其在农业生产中的应用情况,并对未来的研究方向提出了展望,以期为后续应用奠定基础。
中图分类号:
李秀启, 李文静, 李冰, 肖兴中, 彭涛. 植物中哌啶酸的生物功能及作用机制研究进展[J]. 植物研究, 2025, 45(1): 15-21.
Xiuqi LI, Wenjing LI, Bing LI, Xingzhong XIAO, Tao PENG. Advances in Biological Functions and Mechanisms of Pipecolic Acid in Plants[J]. Bulletin of Botanical Research, 2025, 45(1): 15-21.
表1
植物中哌啶酸及其衍生物功能
研究对象 Research object | 生物功能 Biological function | 年份 Year | 参考文献 Reference |
---|---|---|---|
百脉根 Lotus corniculatus | 茎生长抑制 Stem growth inhibition | 2014 | [ |
拟南芥 Arabidopsis thaliana | 根生长抑制 Root growth inhibition | 2018 | [ |
生长迟缓和叶片卷曲 Growth retardation and leaf curling | 2020 | [ | |
增加莲座大小和地上部鲜质量 Increased rosette size and aboveground fresh mass | 2021 | [ | |
激活系统获得性抗性 Activated system-available resistance | 2018 | [ | |
鼓凸浮萍 Lemna gibba | 开花诱导 Flowering induction | 1987 1992 1997 | [ [ [ |
三叶浮萍 Lemna paucicostata | |||
苹果 Malus pumila | 促进果实成熟 Promote fruit ripening | 1997 | [ |
榴莲 Durio zibethinus | 2021 | [ | |
番茄 Solanum lycopersicum | 2023 | [ | |
碱菀 Aster pannonicum | 提高耐盐性 Improved salt tolerance | 1970 | [ |
紫花苜蓿 Medicago sativa | 2024 | [ | |
番茄 Solanum lycopersicum | 提高抗旱能力 Improved drought resistance | 2023 | [ |
1 | 王小菁.植物生理学[M].8版.北京:高等教育出版社,2019:328-348. |
WANG X J.Plant physiology[M].8th ed.Beijing:Higher Education Press,2019:328-348. | |
2 | 闫凤鸣.化学生态学[M].2版.北京:科学出版社,2011:173-198. |
YAN F M.Chemical ecology[M].2nd ed.Beijing:Science Press,2011:173-198. | |
3 | RAJA V, MAJEED U, KANG H,et al.Abiotic stress:interplay between ROS,hormones and MAPKs[J].Environmental and Experimental Botany,2017,137:142-157. |
4 | WU J Q, BALDWIN I T.New insights into plant responses to the attack from insect herbivores[J].Annual Review of Genetics,2010,44(1):1-24. |
5 | GUO N, ZHANG S N, GU M J,et al.Function,transport,and regulation of amino acids:what is missing in rice?[J].The Crop Journal,2021,9(3):530-542. |
6 | MORRISON R I.The isolation of L-pipecolinic acid from Trifolium repens [J].Biochemical Journal,1953,53(3):474-478. |
7 | AL-ROOQI M M, MUGHAL E U, RAJA Q A,et al.Recent advancements on the synthesis and biological significance of pipecolic acid and its derivatives[J].Journal of Molecular Structure,2022,1268:133719. |
8 | 李明.4-甲基哌啶酸的合成研究[D].成都:西南交通大学,2014. |
LI M.Synthesis of 4-methylpiperidinic acid[D].Chengdu:Southwest Jiaotong University,2014. | |
9 | BOULANGER P, OSTEUX R.Products of deamination of diamino acids by L-diaminoacid dehydrogenase of turkey liver[J].Comptes Rendus Hebdomadaires des Seances de L’academie des Sciences,1952,235(9):524-525. |
10 | 李国强,刘小玲,李平林,等.Δ1-哌啶酸(P2C)及其衍生物的合成综述[J].中国海洋大学学报(自然科学版),2017,47(8):82-92. |
LI G Q, LIU X L, LI P L,et al.Research progress on the synthesis of Δ1-pipecolic acid(P2C) and its derivatives[J].Periodical of Ocean University of China,2017,47(8):82-92. | |
11 | BOULANGER P, OSTEUX R.Products of the action of L-amino acid dehydrogenase from the liver of turkeys on arginine,ornithine and lysine[J].Comptes Rendus Hebdomadaires des Seances de L’academie des Sciences,1955,241(1):125-127. |
12 | BOULANGER P, SACQUET E, OSTEUX R.Fate of L-pipecolic acid and delta1-piperidine-2-carboxylic acid in the "sterile" white rat[J].Comptes Rendus Hebdomadaires des Seances de L'academie des Sciences,1963,257:788-790. |
13 | BOULANGER P, SACQUET E, OSTEUX R,et al.Formation of CO2-14 from labeled lysine,delta-1-piperidine-2-carboxylic acid and pipecolic acid in the “sterile” rat[J].Comptes Rendus Hebdomadaires des Seances de L’academie des Sciences,1964,259:932-933. |
14 | BROQUIST H P.Lysine-pipecolic acid metabolic relationships in microbes and mammals[J].Annual Review of Nutrition,1991,11:435-448. |
15 | GUPTA R N, SPENSER I D.Biosynthesis of the piperidine nucleus:the mode of incorporation of lysine into pipecolic acid and into piperidine alkaloids[J].Journal of Biological Chemistry,1969,244(1):88-94. |
16 | HARTMANN M, KIM D, BERNSDORFF F,et al.Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity[J].Plant Physiology,2017,174(1):124-153. |
17 | 王萍.高温干旱逆境应答中番茄氨基酸类生物活性物质的合成响应及其对生长发育的调控作用研究[D].杭州:浙江大学,2023. |
WANG P.The biosynthesis and roles of amino acid bioactive substances in regulating tomato growth and development under high temperature and drought stress[D].Hangzhou:Zhejiang University,2023. | |
18 | HARTMANN M, ZEIER T, BERNSDORFF F,et al.Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity[J].Cell,2018,173(2):456-469. |
19 | SHAN L B, HE P.Pipped at the post:pipecolic acid derivative identified as SAR regulator[J].Cell,2018,173(2):286-287. |
20 | WANG Y M, SCHUCK S, WU J N,et al.A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance[J].The Plant Cell,2018,30(10):2480-2494. |
21 | CHEN W, LI X L, TIAN L,et al.Knockdown of LjALD1,AGD2-like defense response protein 1,influences plant growth and nodulation in Lotus japonicus [J].Journal of Integrative Plant Biology,2014,56(11):1034-1041. |
22 | LIU Y N, SUN T J, SUN Y L,et al.Diverse roles of the salicylic acid receptors NPR1 and NPR3/NPR4 in plant immunity[J].The Plant Cell,2020,32(12):4002-4016. |
23 | CAI J H, JOZWIAK A, HOLOIDOVSKY L,et al.Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth[J].Molecular Plant,2021,14(3):440-455. |
24 | FUJIOKA S, SAKURAI A, YAMAGUCHI I,et al.Isolation and identification of L-pipecolic acid and nicotinamide as flower-inducing substances in Lemna [J].Plant and Cell Physiology,1987,28(6):995-1003. |
25 | FUJIOKA S, SAKURAI A.Effect of L-pipecolic acid on flowering in Lemna paucicostata and Lemna gibba [J].Plant and Cell Physiology,1992,33(4):419-426. |
26 | FUJIOKA S, SAKURAI A.Conversion of lysine to L-pipecolic acid induces flowering in Lemna paucicostata 151[J].Plant and Cell Physiology,1997,38(11):1278-1280. |
27 | MAGNÉ C, BONENFANT-MAGNÉ M, AUDRAN J C.Nitrogenous indicators of postharvest ripening and senescence in apple fruit(Malus domestica Borkh.cv.Granny Smith)[J].International Journal of Plant Sciences,1997,158(6):811-817. |
28 | CHAROENSUMRAN P, PRATUMYOT K, VILAIVAN T,et al.Investigation of key chemical species from durian peduncles and their correlations with durian maturity[J].Scientific Reports,2021,11(1):13301. |
29 | NIE H Z, WU Y Y, YAO C P,et al.Suppression of edr2-mediated powdery mildew resistance,cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis [J].Journal of Genetics and Genomics,2011, 38(4):137-148. |
30 | DURRANT W E, DONG X.Systemic acquired resistan-ce[J].Annual Review of Phytopathology,2004,42:185-209. |
31 | 吴楠,覃磊,彭志红,等.系统获得性抗性移动信号Pip/NHP研究进展[J].植物学报,2022,57(4):412-421. |
WU N, QIN L, PENG Z H,et al.Research progress of mobile signal Pip/NHP in systemic acquired resistance[J].Chinese Bulletin of Botany,2022,57(4):412-421. | |
32 | BERNSDORFF F, DÖRING A C, GRUNER K,et al.Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and-independent pathways[J].The Plant Cell,2016, 28(1):102-129. |
33 | GOAS G, LARHER F, GOAS M.Mise en évidence de l'acide pipécolique et 5-hydroxypipécolique dans certaines halophytes[J].C R Acad Sci Paris,1970,271:1368-1371. |
34 | 段小兰,朱建峰,李伟,等.盐胁迫下紫花苜蓿萌发期和幼苗期代谢组学分析[J].中国草地学报,2024, 46(2):35-47. |
DUAN X L, ZHU J F, LI W,et al.Metabolomic analysis of medicago sativa at germination and seedling stage under salt stress[J].Chinese Journal of Grassland,2024, 46(2):35-47. | |
35 | ARRUDA P, BARRETO P.Lysine catabolism through the saccharopine pathway:enzymes and intermediates involved in plant responses to abiotic and biotic stress[J].Frontiers in Plant Science,2020,11:587. |
36 | CHEN Y C, HOLMES E C, RAJNIAK J,et al. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(21):E4920-E4929. |
37 | HARTMANN M, ZEIER J.L-lysine metabolism to N-hydroxypipecolic acid:an integral immune-activating pathway in plants[J].The Plant Journal,2018,96(1):5-21. |
38 | HARTMANN M, ZEIER J. N-hydroxypipecolic acid and salicylic acid:a metabolic duo for systemic acquired resistance[J].Current Opinion in Plant Biology,2019,50:44-57. |
39 | MOHNIKE L, REKHTER D, HUANG W J,et al.The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity[J].The Plant Cell,2021,33(3):735-749. |
40 | BAUER S, MEKONNEN D W, HARTMANN M,et al.UGT76B1,a promiscuous hub of small molecule-based immune signaling,glucosylates N-hydroxypipecolic acid,and balances plant immunity[J].The Plant Cell,2021,33(3):714-734. |
41 | WANG C X, LIU R Y, LIM G H,et al.Pipecolic acid confers systemic immunity by regulating free radicals[J].Science Advances,2018,4(5):eaar4509. |
42 | DING P T, REKHTER D, DING Y L,et al.Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance[J].The Plant cell,2016,28(10):2603-2615. |
43 | NÁVAROVÁ H, BERNSDORFF F, DÖRING A C,et al.Pipecolic acid,an endogenous mediator of defense amplification and priming,is a critical regulator of inducible plant immunity[J].The Plant cell,2012,24(12):5123-5141. |
44 | SONG J T, LU H, MCDOWELL J M,et al.A key role for ALD1 in activation of local and systemic defenses in Arabidopsis [J].The Plant Journal,2004,40(2):200-212. |
45 | DING Y L, SUN T J, AO K,et al.Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plantimmunity[J].Cell,2018,173(6):1454-1467. |
46 | GOUESBET G, JEBBAR M, TALIBART R,et al.Pipecolic acid is an osmoprotectant for Escherichia coli taken up by the general osmoporters ProU and ProP[J].Microbiology,1994,140(9):2415-2422. |
47 | MOULIN M, DELEU C, LARHER F,et al.The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues[J].Plant Physiology and Biochemistry,2006,44(7/9):474-482. |
48 | PÉREZ-GARCÍA F, BRITO L F, WENDISCH V F.Function of L-pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions[J].Frontiers in Microbiology,2019,10:340. |
49 | VAN BUTSELAAR T, VAN DEN ACKERVEKEN G.Salicylic acid steers the growth-immunity tradeoff[J].Trends in Plant Science,2020,25(6):566-576. |
[1] | 林云, 毕海燕. 7个中国菊科植物名称原白中采集号错误之更正[J]. 植物研究, 2025, 45(1): 148-154. |
[2] | 徐晴晴, 孙德辉, 王文梦, 李当当, 蓝兴国, 隋广超. 液-液相分离机制介导的基因表达调节植物生长发育和抗逆性状研究进展[J]. 植物研究, 2024, 44(6): 805-811. |
[3] | 崔夏, 郝强, 李飞飞. 中国北方外来入侵植物研究[J]. 植物研究, 2024, 44(6): 843-851. |
[4] | 张继强, 芦娟, 王三英, 林琳, 王杰, 杨昌文. 濒危植物大果青杄群落生态位特征及群落稳定性[J]. 植物研究, 2024, 44(6): 863-869. |
[5] | 高智远, 司孟鑫, 王彪, 马和平. 林芝地区典型区域藓类植物多样性与区系分析[J]. 植物研究, 2024, 44(6): 890-900. |
[6] | 张喜亭, 张建宇, 仲召亮, 王文杰. 大兴安岭绰纳河保护区植物多样性特征[J]. 植物研究, 2024, 44(5): 730-737. |
[7] | 郭迦南, 赵倚澎, 杨元植, 管清杰. 超氧化物歧化酶在植物响应干旱、盐碱和冷害中的作用[J]. 植物研究, 2024, 44(4): 481-490. |
[8] | 王浩基, 白宏超, 高维婧, 赵熙明, 刘宇宁, 杜玉啸, 杨秀娟, 郑宝江. 黑龙江省博物馆百年植物标本信息整理与挖掘[J]. 植物研究, 2024, 44(3): 321-329. |
[9] | 吴玉虎, 庞哲, 史惠兰. 青海湖流域种子植物区系研究[J]. 植物研究, 2024, 44(3): 330-340. |
[10] | 江燕东, 彭正东, 徐琪, 甘婉怡, 黄柳菁. 喜旱莲子草叶片、细根功能性状对异质生境的响应[J]. 植物研究, 2024, 44(3): 410-419. |
[11] | 杜华栋, 范鹏辉, 毕银丽, 谢姗姗, 刘研, 刘云龙. 干旱砾漠区不同地貌单元植物群落特征及其与环境因子的关系[J]. 植物研究, 2024, 44(3): 459-469. |
[12] | 郭冰冰, 刘明洋, 代龙军, 杨洪, 王立丰. 植物激素调控橡胶树产排胶机制研究进展[J]. 植物研究, 2024, 44(2): 161-167. |
[13] | 周训康, 杜凡, 周幸, 徐梦蔚, 何程程, 原日强, 石明. 文山州重点保护野生植物地理分布及优先保护等级[J]. 植物研究, 2024, 44(2): 210-219. |
[14] | 刘玮, 朱自强. 植物根部热形态建成的研究进展[J]. 植物研究, 2024, 44(1): 1-7. |
[15] | 宋泊沂, 王明明, 庄伟伟. 3种苔藓植物对模拟大气氮沉降的生理响应[J]. 植物研究, 2024, 44(1): 107-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||