1 |
黄琼,王丽君.土壤中重金属污染现状与防治研究[J].资源节约与环保,2020(11):97-98.
|
|
HUANG Q, WANG L J.Present situation and prevention of heavy metal pollution in soil[J]. Resources Economization & Environmental Protection,2020(11):97-98.
|
2 |
陈泽华,焦思,余爱华,等.土壤重金属污染评价方法探析:以南京市为例[J].森林工程,2020,36(3):28-36.
|
|
CHEN Z H, JIAO S, YU A H,et al.Analysis on evaluation methods of heavy metal pollution in soil-taking Nanjing as an example[J].Forest Engineering,2020,36(3):28-36.
|
3 |
张丽,侯萌瑶,安毅,等.生物炭对水稻根际微域土壤Cd生物有效性及水稻Cd含量的影响[J].农业环境科学学报,2017,36(4):665-671.
|
|
ZHANG L, HOU M Y, AN Y,et al.Effects of biochar on Cd bioavailability in rhizosphere microenvironment of cadmium-polluted paddy and Cd content in rice[J].Journal of Agro-Environment Science,2017,36(4):665-671.
|
4 |
金裕华,邹涛,康薇,等.木本植物修复对重金属污染土壤微生物多样性及土壤肥力的影响[J].湖北理工学院学报,2018,34(6):15-19.
|
|
JIN Y H, ZOU T, KANG W,et al.Effects of woody phytoremediation on microbial diversity and soil fertility in heavy metal contaminated soil[J].Journal of Hubei Polytechnic University,2018,34(6):15-19.
|
5 |
商侃侃,张国威,蒋云.54种木本植物对土壤Cu、Pb、Zn的提取能力[J].生态学杂志,2019,38(12):3723-3730.
|
|
SHANG K K, ZHANG G W, JIANG Y.The phytoextraction ability of 54 woody species on Cu,Pb,Zn in soil[J].Chinese Journal of Ecology,2019,38(12):3723-3730.
|
6 |
曾鹏,郭朝晖,肖细元,等.芦竹和木本植物间种修复重金属污染土壤[J].环境科学,2018,39(11):5207-5216.
|
|
ZENG P, GUO Z H, XIAO X Y,et al.Intercropping Arundo donax with woody plants to remediate heavy metal-contaminated soil[J].Environmental Science,2018,39(11):5207-5216.
|
7 |
LIU M Y, WEN Y D, SUN W J,et al.Genome-wide identification,phylogeny,evolutionary expansion and expression analyses of bZIP transcription factor family in tartary buckwheat[J].BMC Genomics,2019,20(1):483.
|
8 |
卢平,武懿茂,武强强,等.谷子bZIP转录因子家族的全基因组鉴定与生物信息学分析[J].山西农业科学,2020,48(9):1361-1370,1430.
|
|
LU P, WU Y M, WU Q Q,et al.Genome-wide identification and bioinformatics analysis of Setaria italica bZIP transcription factor family[J].Journal of Shanxi Agricultural Sciences,2020,48(9):1361-1370,1430.
|
9 |
XU Z G, DONG M, PENG X Y,et al.New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis[J].Ecotoxicology and Environmental Safety,2019,171:301-312.
|
10 |
GGCORRÊA L, RIAÑO-PACHÓN D M, SCHRAGO C G,et al.The role of bZIP transcription factors in green plant evolution:adaptive features emerging from four founder genes[J].PLoS One,2008,3(8):e2944.
|
11 |
LIU C T, MAO B G, OU S J,et al. OsbZIP71,a bZIP transcription factor,confers salinity and drought tolerance in rice[J].Plant Molecular Biology,2014,84(1/2):19-36.
|
12 |
职帅,李畅,陈景光,等.锌铁转运蛋白基因OsZIP5和OsZIP9参与水稻Zn2+和Cd2+的吸收和转运[J].分子植物育种,2021,19(1):137-148.
|
|
ZHI S, LI C, CHEN J G,et al.Zinc-iron transporter genes OsZIP5 and OsZIP9 are involved in the uptake and transport of Zn2+ and Cd2+ in rice[J].Molecular Plant Breeding,2021,19(1):137-148.
|
13 |
HE Q, CAI H Y, BAI M Y,et al.A soybean bZIP transcription factor GmbZIP19 confers multiple biotic and abiotic stress responses in plant[J].International Journal of Molecular Sciences,2020,21(13):4701.
|
14 |
HUANG C J, ZHOU J H, JIE Y C,et al.A ramie bZIP transcription factor BnbZIP2 is involved in drought,salt,and heavy metal stress response[J].Dna and Cell Biology,2016,35(12):776-786.
|
15 |
LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J].Methods,2001,25(4):402-408.
|
16 |
王华,曹启民,桑爱云,等.超积累植物修复重金属污染土壤的机理[J].安徽农业科学,2006,34(22):5948-5950,6023.
|
|
WANG H, CAO Q M, SANG A Y,et al.Mechanisms of hyperaccumulators remediating heavy-metal contaminated soil[J].Journal of Anhui Agricultural Sciences,2006,34(22):5948-5950,6023.
|
17 |
吴双桃,吴晓芙,胡曰利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境,2004,13(2):156-157,160.
|
|
WU S T, WU X F, HU Y L,et al.Studies on soil pollution around Pb-Zn smelting factory and heavy metals hyperaccumulators[J].Ecology and Environment,2004,13(2):156-157,160.
|
18 |
KANG S G, PRICE J, LIN P C,et al.The Arabidopsis bZIP1 transcription factor is involved in sugar signaling,protein networking,and DNA binding[J].Molecular Plant,2010,3(2):361-373.
|
19 |
SUN X L, LI Y, CAI H,et al.The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt,osmotic and drought stresses[J].Journal of Plant Research,2012,125(3):429-438.
|
20 |
NOSHI M, MORI D, TANABE N,et al. Arabidopsis clade IV TGA transcription factors,TGA10 and TGA9,are involved in ROS-mediated responses to bacterial PAMP flg22[J].Plant Science,2016,252:12-21.
|
21 |
MATIOLLI C C, TOMAZ J P, DUARTE G T,et al.The Arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose signals[J].Plant Physiology,2011,157(2):692-705.
|
22 |
耿芳,郭伟华,郭玉双,等.烟草DREB转录因子新基因的克隆与功能分析[J].浙江大学学报(农业与生命科学版),2011,37(1):22-30.
|
|
GENG F, GUO W H, GUO Y S,et al.Cloning and functional analysis of a novel DREB transcription factor from Nicotiana benthamiana [J].Journal of Zhejiang University(Agriculture & Life Sciences),2011,37(1):22-30.
|
23 |
才华,朱延明,柏锡,等.野生大豆GsbZIP33基因的分离及胁迫耐性分析[J].分子植物育种,2011,9(4):397-401.
|
|
CAI H, ZHU Y M, BAI X,et al.Isolation and tolerance analysis of GsbZIP33 gene linked to response on stress in Glycine soja [J].Molecular Plant Breeding,2011,9(4):397-401.
|
24 |
王荣凯.苹果MdCIPK6的基因克隆及其在逆境胁迫响应中的作用[D].泰安:山东农业大学,2011.
|
|
WANG R K.Molecular cloning and functional characterization of MdCIPK6 reveals its involvement in multiple stresses tolerance in apple[D].Taian:Shandong Agricultural University,2011.
|
25 |
许佳瑶,陈俏丽,张瑞芝,等.松材线虫Bx-ubc-3基因克隆及泛素通路鉴定[J].森林工程,2019,35(5):9-15.
|
|
XU J Y, CHEN Q L, ZHANG R Z,et al.Genetic cloning of bx-ubc-3 and identification of ubiquitin pathway from Bursaphelenchus xylophilus(Aphelenchida:Aphelenchoididae)full text replacement[J].Forest Engineering,2019,35(5):9-15.
|
26 |
姜骋,张曦,田晴,等.白桦BpbHLH112基因克隆及其启动子表达特性分析[J].植物研究,2020,40(4):583-592.
|
|
JIANG C, ZHANG X, TIAN Q,et al.Isolation of the BpbHLH112 gene and expression analysis of its promoter in Betula platyphylla [J].Bulletin of Botanical Research,2020,40(4):583-592.
|
27 |
YANG G Y, ZHANG W H, SUN Y D,et al.Two novel WRKY genes from Juglans regia,JrWRKY6 and JrWRKY53,are involved in abscisic acid-dependent stress responses[J].Biologia Plantarum,2017,61(4):611-621.
|
28 |
YANG G, ZHANG W, LIU Z,et al.Both JrWRKY2 and JrWRKY7 of Juglan sregia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction[J].Plant Biology,2017,19(2):268-278.
|
29 |
YANG J L, WANG Y C, LIU G F,et al. Tamarix hispida metallothionein-like ThMT3,a reactive oxygen species scavenger,increases tolerance against Cd2+,Zn2+,Cu2+,and NaCl in transgenic yeast[J].Molecular Biology Reports,2011,38(3):1567-1574.
|
30 |
JIANG C H, XU J Y, ZHANG H,et al.A cytosolic class I small heat shock protein,RcHSP17.8,of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli,yeast and Arabidopsis thaliana [J].Plant,Cell & Environment,2009,32(8):1046-1059.
|