Welcome to Bulletin of Botanical Research! Today is Share:

Bulletin of Botanical Research ›› 2025, Vol. 45 ›› Issue (1): 45-56.doi: 10.7525/j.issn.1673-5102.2025.01.006

• Original Paper • Previous Articles     Next Articles

Ecological Stoichiometry of C, N, P of Plant—Soil between two Elaeagnusangustifolia Forests in Saline-Alkaline Land in the Middle and Lower Reaches of Tarim River

Yuling NIE1,2, Qinghong LUO2(), Miao HE2, Zhaoxiang ZHANG1,2   

  1. 1.College of Forestry and Landscape Architecture,Xinjiang Agricultural University,Urumqi 830052
    2.Institute of Afforestation and Sand Control,Xinjiang Academy of Forestry,Urumqi 830063
  • Received:2024-09-06 Online:2025-01-20 Published:2025-01-23
  • Contact: Qinghong LUO E-mail:lqh482325@sina.com

Abstract:

The saline and alkaline land in Xinjiang is vast, and clarifying the characteristics of carbon, nitrogen and phosphorus stoichiometric cycles between organs and soil in the native drought-resistant and saline-tolerant Elaeagnus angustifolia forests in Xinjiang is of great significance in promoting the construction of desert, saline and alkaline vegetation and ecological restoration in the middle and lower reaches of the Tarim River. The E. angustifolia forests(E.moorcroftii and E. angustifolia) in the lower reaches of Tarim River were taken as materials, and the stoichiometric characteristics of different organs(leaves, branches, roots) and soils of two tree species in the forest and their interrelationships were analyzed, respectively. The results showed that: (1)The average content of carbon, nitrogen, and phosphorus in the leaves of E. angustifolia forests were 424.36-484.40 g⋅kg-1, 33.83-38.71 g⋅kg-1 and 1.50-2.20 g⋅kg-1, respectively, and with moderate C and N contents and slightly low P content. The N∶P ratios of E.moorcroftii(17.64) and E. angustifolia(22.82) were higher than 16, indicating the growth limited by P. (2)There were significant differences in ecological stoichiometric characteristics of each organ in the E. angustifolia forests, and the contents of N and P were the largest in leaves. (3)The soil elements content of the E. angustifolia forests were significantly affected by soil depth, showing a vertical decrease along the soil profile and presenting a certain enrichment in the surface layer (0-20 cm). The C∶N, C∶P and N∶P of the 0-60 cm soil layer were 17.94, 9.32 and 0.62, respectively, and the mineralization capacity of soil N element was weak, and N was deficient. (4)Soil N and P contents of E. angustifolia forests were significantly positively correlated with root N and P contents(P<0.05), leaf N contents were significantly negatively correlated with 0-20 cm soil C and N contents of each layer(P<0.05), and significantly positively correlated with soil P contents; leaf P contents were significantly and positively correlated with soil P contents of each layer, and there was no significant correlation between leaf C with soil C(P>0.05). In general, in poor and severe saline-alkaline soils, the E. angustifolia forests stored less nutrients in branches and roots and usually supplied preferentially nutrients to leaves, the upper part of the E. angustifolia forests was mainly limited by P, and the underground part was mainly limited by N. Therefore, the overall nutrient cycling in E. angustifolia forests was limited by N and P elements.

Key words: ecological stoichiometry, saline-alkaline soil, Elaeagnus angustifolia, soil, organs

CLC Number: