Bulletin of Botanical Research ›› 2021, Vol. 41 ›› Issue (4): 564-572.doi: 10.7525/j.issn.1673-5102.2021.04.012
• Research report • Previous Articles Next Articles
Dong-Lin LÜ1, Teng LI2, Yi-Wen GUO1, Jing JIANG1, Hai-Jiao HUANG1()
Received:
2020-03-05
Online:
2021-07-20
Published:
2021-03-24
Contact:
Hai-Jiao HUANG
E-mail:haijiao_sea@163.com
About author:
LÜ Dong-Lin(1996—),male,undergraduate degree,tree genetics and breeding.
Supported by:
CLC Number:
Dong-Lin LÜ, Teng LI, Yi-Wen GUO, Jing JIANG, Hai-Jiao HUANG. Determination of Seed Vigor and Genetic Analysis of Foreign Genes in Different Transgenic Birch Hybrids[J]. Bulletin of Botanical Research, 2021, 41(4): 564-572.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2021.04.012
Table 1
Tested white birch family code
杂交母本 Female parent | 杂交父本 Male parent | 组合代码 Group code | 子代代码 Offspring code |
---|---|---|---|
BpAP1转基因白桦T1代 T1 generation of BpAP1 transgenic birch | BpGH3.5转基因白桦T0代 T0 generation of BpGH3.5 transgenic birch | P13-1×G7 | AG13-1 |
P13-2×G7 | AG13-2 | ||
P13-3×G7 | AG13-3 | ||
P13-4×G7 | AG13-4 | ||
P13-5×G7 | AG13-5 | ||
P20-1×G8 | AG20-1 | ||
P20-2×G8 | AG20-2 | ||
P20-3×G8 | AG20-3 | ||
P20-4×G8 | AG20-4 | ||
P20-5×G8 | AG20-5 | ||
P20-6×G8 | AG20-6 | ||
P20-7×G8 | AG20-7 | ||
P20-8×G8 | AG20-8 | ||
BpCCR转基因白桦T0代 T0 generation of BpCCR transgenic birch | P15-1×C13 | AC15-1 | |
P15-2×C13 | AC15-2 | ||
P15-3 ×C13 | AC15-3 | ||
BpAP1TabZIP转基因白桦T1代 T1 generation of BpAP1 and TabZIP transgenic birch | BpCCR转基因白桦T0代 T0 generation of BpCCR transgenic birch | PB1-2×C13 | ACB1-1 |
PB2-1×C13 | ACB2-1 | ||
BpGH3.5转基因白桦T0代 T0 generation of BpGH3.5 transgenic birch | PB1-1×G7 | AGB1-1 | |
PB5-1×G7 | AGB5-1 | ||
PB5-2×G22 | AGB5-2 | ||
PB5-3×G22 | AGB5-3 | ||
BpGH3.5转基因白桦T0代 T0 generation of BpGH3.5 transgenic birch | BpAP1转基因白桦T1代 T1 generation of BpAP1 transgenic birch | G8×AP1 | GA8 |
G22×AP1 | GA22 | ||
BpCCR转基因白桦T0代 T0 generation of BpCCR transgenic birch | C13×AP1 | CA13 | |
BpGH3.5转基因白桦T0代(G8) T0 generation of BpGH3.5 transgenic birch(G8) | 自由授粉 Open pollination | —— | G8 |
BpGH3.5转基因白桦T0代(G22) T0 generation of BpGH3.5 transgenic birch(G22) | G22 | ||
BpCCR转基因白桦T0代(C13) T0 generation of BpCCR transgenic birch(C13) | C13 |
Fig.1
PCR amplification analysis of parent transgenic birchA: M.DNA Marker DL2000;1.Positive control;2.Water control;3.Negative control(WT);4.BpGH3.5 transgenic line G7;5.BpGH3.5 transgenic line G8;6.BpGH3.5 transgenic line G22;B:M.DNA Marker DL2000;1.Positive control;2.Water control;3.Negative control (WT);4.BpCCR transgenic line C13
Table 3
Variance analysis among different hybrid offspring families on seed vigor index
性状 Trait | 均值 Average | 自由度 df | 均方MS Mean square | F值 F value | 标准差 Standard deviation | 变幅 Variable amplitude | 变异系数 Coefficient of variation(%) | 家系遗传力 Heritability |
---|---|---|---|---|---|---|---|---|
千粒质量 Thousand-seed weight(mg) | 181.25 | 27 | 2 189.728 | 134.963** | 57.16 | 84.00~410.00 | 31.54 | 0.992 6 |
发芽率 Germination rate(%) | 30.94 | 27 | 1 024.502 | 47.043** | 12.70 | 5.74~64.90 | 41.05 | 0.978 7 |
发芽势 Germination potential(%) | 19.76 | 27 | 881.696 | 19.369** | 12.72 | 1.00~57.00 | 64.37 | 0.948 4 |
发芽指数 Germination index | 7.24 | 27 | 148.012 | 30.337** | 4.98 | 0.17~19.09 | 68.78 | 0.967 0 |
平均发芽时间 Mean time of germination(d) | 4.53 | 27 | 5.441 | 16.289** | 1.02 | 2.33~7.00 | 22.52 | 0.938 6 |
Table 4
Multiple comparison thousand-seed weigh,germination rate,germination potential,germination rate and mean time of germination among different families
序号 Number | 家系 Family | 千粒质量 Thousand-seed weight(mg) | 家系 Family | 发芽率 Germination rate(%) | 家系 Family | 发芽势 Germination potential(%) | 家系 Family | 发芽指数 Germination index | 家系 Family | 平均发芽时间 Mean time of germination(d) |
---|---|---|---|---|---|---|---|---|---|---|
1 | AG20-6 | 381.50±30.45a | AG20-6 | 54.02±7.47a | AG20-4 | 10.95±3.87abc | CA13 | 16.14±2.06a | AGB5-2 | 6.66±0.31a |
2 | AG20-4 | 279.63±12.55b | CA13 | 46.09±4.22b | AG20-5 | 9.40±3.32g | AG20-6 | 15.26±1.84a | AG20-4 | 5.81±0.89b |
3 | AG20-8 | 264.50±11.84c | AG20-8 | 45.96±3.19b | AG20-7 | 8.12±2.87cde | AG13-1 | 14.20±2.30ab | AG20-5 | 5.58±0.82bc |
4 | AG13-1 | 262.00±27.00c | AG20-7 | 45.94±8.12b | AG20-6 | 7.47±3.74a | AG20-7 | 12.35±3.30bc | GA22 | 5.58±0.66bc |
5 | AG13-4 | 240.50±7.78d | AG20-3 | 42.47±3.31bc | AG13-2 | 4.72±1.67def | AG20-3 | 12.20±3.30bc | GA8 | 5.47±0.66bcd |
6 | ACB1-1 | 231.50±10.03de | AG13-1 | 42.25±4.30bc | AG13-1 | 4.30±1.52ab | AG20-8 | 11.29±4.11cd | AG13-3 | 5.41±0.57bcd |
7 | CA13 | 230.38±16.26de | AG20-4 | 40.23±10.95bcd | CA13 | 4.22±1.49a | AG20-1 | 10.92±2.47cde | AG13-4 | 5.36±0.13bcd |
8 | G22 | 220.75±11.73e | AG20-1 | 38.96±4.09cd | AG13-3 | 4.20±1.48defg | G8 | 9.96±1.11cdef | AG20-2 | 5.27±0.69bcde |
9 | AG20-1 | 219.63±15.99e | AGB1-1 | 38.62±3.55cd | AG20-1 | 4.09±1.45def | AG13-5 | 9.87±2.46cdef | G22 | 5.25±0.46bcde |
10 | GA22 | 181.88±5.74f | G22 | 36.66±3.70cde | AG13-5 | 3.97±1.4fg | AGB1-1 | 9.26±1.03def | ACB2-1 | 5.03±0.61cde |
11 | AGB5-1 | 179.25±14.97fg | ACB1-1 | 35.76±3.34def | GA8 | 3.76±1.33fg | ACB1-1 | 8.94±2.05def | AGB5-3 | 4.94±1.07cdef |
12 | AG20-2 | 173.88±9.93fgh | G8 | 35.19±1.88defg | G22 | 3.70±1.31def | C13 | 8.79±1.53def | AG13-2 | 4.82±0.74cdefg |
13 | AG20-5 | 171.13±6.98fgh | AG13-2 | 35.03±4.72defg | AGB5-2 | 3.67±2.12h | AG20-4 | 8.29±4.704ef | AC15-1 | 4.79±0.66defgh |
14 | AC15-2 | 170.71±8.56fgh | C13 | 34.95±2.55defg | AGB1-1 | 3.55±2.05def | AGB5-1 | 7.64±1.03fg | AC15-2 | 4.77±0.96defgh |
15 | GA8 | 170.50±9.37fgh | AG13-3 | 32.14±4.20efgh | AC15-3 | 3.43±1.21h | AG13-2 | 7.48±2.85fg | AGB1-1 | 4.56±0.23efghi |
16 | G8 | 169.88±6.45fgh | AGB5-1 | 31.98±2.56efgh | ACB1-1 | 3.34±1.18efg | G22 | 7.26±1.50fg | AG20-6 | 4.55±0.33efghi |
17 | C13 | 169.13±8.01fgh | AG13-4 | 30.00±0.94fgh | AG20-3 | 3.31±1.17bcd | AG13-3 | 5.53±1.97gh | AG20-7 | 4.52±0.30efghi |
18 | AG20-7 | 168.13±9.75fgh | AG13-5 | 29.69±3.97ghi | AG20-8 | 3.19±1.3def | AG13-4 | 4.90±0.44gh | AG20-8 | 4.24±0.10fghij |
19 | AGB1-1 | 163.00±15.72gh | GA22 | 28.84±2.77hi | AG20-2 | 3.13±1.11g | GA8 | 4.19±1.53hi | ACB1-1 | 4.16±0.49ghij |
20 | AC15-3 | 158.38±8.31h | GA8 | 26.94±3.76hij | AGB5-3 | 2.85±1.01h | GA22 | 4.05±1.01hi | C13 | 4.05±0.46hijk |
21 | AG13-3 | 141.88±7.85i | AG20-5 | 24.20±9.40ij | GA22 | 2.77±0.98fg | AG20-5 | 3.90±3.38hi | AG20-3 | 3.99±0.57ijkl |
22 | AG13-2 | 138.50±9.10i | AG20-2 | 22.95±3.13j | AGB5-1 | 2.56±0.91efg | AG20-2 | 3.18±1.21hij | AGB5-1 | 3.92±0.51ijkl |
23 | AG20-3 | 137.38±6.67i | AC15-1 | 15.41±1.66k | C13 | 2.55±0.90efg | AC15-3 | 1.71±0.94ij | AG20-1 | 3.92±0.43ijkl |
24 | AC15-1 | 135.13±7.02i | AC15-3 | 13.05±3.43kl | AC15-2 | 2.39±0.90h | AC15-1 | 1.60±0.44ij | G8 | 3.58±0.16jkl |
25 | ACB2-1 | 128.50±22.98i | AGB5-2 | 12.13±3.67kl | ACB2-1 | 2.24±0.79h | ACB2-1 | 0.84±0.31j | CA13 | 3.33±0.14klm |
26 | AGB5-2 | 108.00±4.00j | ACB2-1 | 11.35±2.24kl | G8 | 1.88±0.66def | AGB5-2 | 0.73±0.41j | AC15-3 | 3.30±0.34lm |
27 | AG13-5 | 102.50±13.35jk | AGB5-3 | 9.84±2.85kl | AC15-1 | 1.66±0.59h | AGB5-3 | 0.67±0.42j | AG13-1 | 3.27±0.1lm |
28 | AGB5-3 | 90.38±4.81k | AC15-2 | 8.13±2.39l | AG13-4 | 0.94±0.66g | AC15-2 | 0.48±0.34j | AG13-5 | 2.77±0.21m |
Table 5
Correlation analysis among seed vigor character of different families
性状 Trait | 千粒质量 Thousand-seed weight(mg) | 发芽率 Germination rate(%) | 发芽势 Germination potential(%) | 发芽指数 Germination index |
---|---|---|---|---|
千粒质量 Thousand-seed weight(mg) | 1 | 0.611** | 0.603** | 0.528** |
发芽率 Germination rate(%) | 1 | 0.858** | 0.915** | |
发芽势 Germination potential(%) | 1 | 0.820** | ||
发芽指数 Germination index | 1 |
Table 6
Detection of the foreign genes in offspring and Chi-square testing
双亲 Parents | 子代 Offspring | 检测株数 Detection of the number | PCR检测阳性的个体数(株)及遗传分离理论比的卡方检测 Positive individual number of PCR and genetic separation ratio of Chi-square testing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
♀ | ♂ | BpGH3.5 | BpAP1 | BpGH3.5+BpAP1 | 均无 None | 预测遗传分离比例 Genetic separation ratio | Χ2 | Χ2(0.05)n | 插入位点数 Insertion sites | ||
P20-1 | G8 | AG20-1 | 24 | 7 | 0 | 5 | 12 | 1∶1∶1∶1 | 12.33 | 7.82 | 不能确定 Uncertain |
PB5-1 | G7 | AGB5-1 | 31 | 5 | 6 | 7 | 13 | 1∶1∶1∶1 | 5.00 | 1 | |
P20-4 | G8 | A14 | 26 | 10 | 6 | 6 | 4 | 1∶1∶1∶1 | 2.92 | 1 | |
双亲 Parents | 子代 Offspring | 检测株数 Detection of the number | PCR检测阳性的个体数(株)及遗传分离理论比的卡方检测 Positive individual number of PCR and genetic separation ratio of Chi-square testing | ||||||||
♀ | ♂ | TabZIP | BpAP1 | TabZIP+ BpAP1 | 均无 None | 预测遗传分离比例 Genetic separation ratio | Χ2 | Χ2(0.05)n | 插入位点数 Insertion sites | ||
PB2-1 | C13 | A30 | 12 | 1 | 2 | 3 | 6 | 1∶1∶1∶1 | 4.67 | 7.82 | 1 |
Table 7
Variance analysis on seedling height, seedling growth, relative growth of seedlings among different families
性状 Trait | 均值 Average | 自由度 df | 均方MS Mean square | F值 F value | 标准差 Standard deviation | 变幅 Variable amplitude | 变异系数 Coefficient of variation(%) | 家系遗传力 Heritability |
---|---|---|---|---|---|---|---|---|
苗高Height(cm) | 39.67 | 14 | 1 959.30 | 11.34** | 14.59 | 5.50~83.00 | 36.77 | 0.91 |
苗高生长量 Seedling growth(cm) | 34.59 | 14 | 1 853.65 | 11.26** | 14.23 | 1.50~69.90 | 41.14 | 0.91 |
苗高相对生长量 Relative growth of seedlings | 7.88 | 14 | 161.22 | 8.41** | 4.73 | 0.28~31.86 | 60.00 | 0.88 |
Table 8
Multiple comparison seedling height,seedling growth,relative growth of seedlings among different families
序号 Number | 家系 Family | 苗高 Height(cm) | 家系 Family | 苗高生长量 Seedling growth(cm) | 家系 Family | 苗高相对生长量 Relative growth of seedlings |
---|---|---|---|---|---|---|
1 | G22 | 52.30±11.26a | G22 | 48.08±11.39a | G22 | 12.58±5.25a |
2 | GA8 | 51.03±18.89a | GA22 | 45.18±15.42a | GA22 | 11.93±6.16a |
3 | GA22 | 49.55±16.09a | GA8 | 44.46±18.64a | AGB5-1 | 8.44±5.97b |
4 | G8 | 42.30±14.2b | G8 | 36.77±13.25b | AG13-2 | 8.12±5.21b |
5 | AGB5-1 | 41.06±11.76bc | AGB5-1 | 35.69±11.98bc | G8 | 8.07±5.16b |
6 | AC15-1 | 40.24±10.92bc | C13 | 33.97±6.11bcd | AG20-3 | 8.00±4.28b |
7 | C13 | 39.62±6.43bc | AC15-1 | 33.26±10.53bcde | GA8 | 7.68±4.64bc |
8 | AG20-3 | 37.39±13.74bcd | AG20-3 | 32.86±13.55bcde | AG20-7 | 7.34±3.83bc |
9 | AG20-4 | 35.77±15.71bcd | AG20-4 | 30.48±15.29bcde | AGB1-1 | 7.28±3.36bc |
10 | CA13 | 35.48±8.84bcd | CA13 | 30.12±8.76bcde | C13 | 6.6±2.24bc |
11 | AG20-1 | 34.34±13.48cd | AG13-2 | 29.48±14.34bcde | AG20-4 | 6.45±3.93bc |
12 | AGB1-1 | 33.73±10.1cd | AG20-1 | 29.30±13.02cde | AG20-1 | 6.32±3.37bc |
13 | AG13-2 | 33.71±14.65cd | AGB1-1 | 29.17±9.54cde | CA13 | 6.07±2.61bc |
14 | AGB5-3 | 31.07±7.18d | AG20-7 | 26.98±12.93de | AGB5-3 | 5.99±3.07bc |
15 | AG20-7 | 30.92±13.17d | AGB5-3 | 26.2±6.62e | AC15-1 | 5.41±2.86c |
1 | 李付广,袁有禄.棉花分子育种进展与展望[J].中国农业科技导报,2011,13(5):1-8. |
Li F G,Yuan Y L.Progress and prospect of cotton molecular breeding[J].Journal of Agricultural Science and Technology,2011,13(5):1-8. | |
2 | Hittalmani S,Parco A,Mew T V,et al.Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J].Theoretical and Applied Genetics,2000,100(7):1121-1128. |
3 | Shah B H,Ding X H,Zeng L X,et al.Pyramiding four bacterial blight resistance genes into rice cultivars in south China[J].Molecular Plant Breeding,2006,4(4):493-499. |
4 | 董娜,张亚娟,张军刚,等.分子标记辅助小麦抗白粉病基因Pm21和Pm13聚合育种[J].麦类作物学报,2014,34(12):1639-1644. |
Dong N,Zhang Y J,Zhang J G,et al.Molecular marker assisted pyramid breeding of powdery mildew resistance gene Pm21 and Pm13[J].Journal of Triticeae Crops,2014,34(12):1639-1644. | |
5 | Matsumoto Y,Watanabe N,Kuboyama T.Cross-species transferability of 86 cucumber(Cucumis sativus L.)microsatellite markers to gherkin(C.anguria L.)[J].Scientia Horticulturae,2012,136:110-114. |
6 | 朱明涛,孙亚林,郑莎,等.分子标记辅助聚合番茄抗病基因育种[J].园艺学报,2010,37(9):1416-1422. |
Zhu M T,Sun Y L,Zheng S,et al.Pyramiding disease resistance genes by molecular marker-assisted selection in tomato[J].Acta Horticulturae Sinica,2010,37(9):1416-1422. | |
7 | Ritonga F N,Chen S.Physiological and molecular mechanism involved in cold stress tolerance in plants[J].Plants,2020,9(5):560. |
8 | Chen S,Lin X,Zhang D W,et al.Genome-wide analysis of NAC gene family in Betula pendula[J].Forests,2019,10(9):741. |
9 | 李天芳,姜静,杨传平,等.我国白桦育种研究概况[J].江苏林业科技,2008,35(2):47-49. |
Li T F,Jiang J,Yang C P,et al.Status of breeding research on Betula platyphylla in China[J].Journal of Jiangsu Forestry Science & Technology,2008,35(2):47-49. | |
10 | Huang H J,Wang S,Jiang J,et al.Overexpression of BpAP1 induces early flowering and produces dwarfism in Betulaplatyphylla × Betulapendula[J].Physiologia Plantarum,2014,151(4):495-506. |
11 | 李园园,杨光,韦睿,等.转TabZIP基因白桦的获得及耐盐性分析[J].南京林业大学学报:自然科学版,2013,37(5):6-12. |
Li Y Y,Yang G,Wei R,et al.TabZIP transferred Betulaplatyphylla generation and salt tolerance analysis[J].Journal of Nanjing Forestry University:Natural Science Edition,2013,37(5):6-12. | |
12 | Zhang W B,Wei R,Chen S,et al.Functional characterization of CCR in birch(Betulaplatyphylla × Betulapendula)through overexpression and suppression analysis[J].Physiologia Plantarum,2015,154(2):283-296. |
13 | Yang G,Chen S,Jiang J.Transcriptome analysis reveals the role of BpGH3.5 in root elongation of Betulaplatyphylla × B. pendula[J].Plant Cell,Tissue and Organ Culture,2015,121(3):605-617. |
14 | 孟德恺,徐志鹏,刘宁宁,等.白桦转BpGH3.5基因叶片早衰突变株的光合特性及生长分析[J].南京林业大学学报:自然科学版,2019,43(5):37-43. |
Meng D K,Xu Z P,Liu N N,et al.Characterization of photosynthetic and growth traits of precocious leaf senescence mutant of BpGH3.5 transgenic lines in Betula platyphylla[J].Journal of Nanjing Forestry University:Natural Science Edition,2019,43(5):37-43. | |
15 | 张宇,陈肃,高源,等.BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应[J].南京林业大学学报:自然科学版,2019,43(1):25-31. |
Zhang Y,Chen S,Gao Y,et al.Functional study of BpMYB4 in birch response to low temperature stress[J].Journal of Nanjing Forestry University:Natural Science Edition,2019,43(1):25-31. | |
16 | 任丽,董京祥,杨洋,等.白桦BpTCP7基因启动子的克隆及表达分析[J].南京林业大学学报:自然科学版,2019,43(1):32-38. |
Ren L,Dong J X,Yang Y,et al.Cloning and expression analysis of BpTCP7 promoter from Betula platyphylla[J].Journal of Nanjing Forestry University:Natural Science Edition,2019,43(1):32-38. | |
17 | 安琳君,栾嘉豫,任丽,等.白桦BpTCP8基因生物信息学及表达特性分析[J].南京林业大学学报:自然科学版,2019,43(5):67-73. |
An L J,Luan J Y,Ren L,et al.Bioinformatics and expression characteristics analysis of BpTCP8 in Betulaplatyphylla Suk.[J].Journal of Nanjing Forestry University:Natural Science Edition,2019,43(5):67-73. | |
18 | 陈素素,张嫚嫚,于洪淼,等.转基因白桦不同杂交组合的种子活力测定及外源基因的遗传规律分析[J].北京林业大学学报,2016,38(1):36-42. |
Chen S S,Zhang M M,Yu H M,et al.Determination of seed vigor and genetic analysis of foreign genes in different transgenic birch hybrids[J].Journal of Beijing Forestry University,2016,38(1):36-42. | |
19 | 赵洁,杜沙沙,邱彤,等.转双Bt基因巨霸杨外源基因表达及抗虫性检测[J].东北林业大学学报,2016,44(3):47-51. |
Zhao J,Du S S,Qiu T,et al.Exogenous gene expression and insect resistance detection of transgenic Populusdeltocdes ‘55/56’ × P. deltocdescv ‘2KEN8’ with double Bt gene[J].Journal of Northeast Forestry University,2016,44(3):47-51. | |
20 | 胥猛,潘惠新,张博,等.林木遗传改良中的分子生物学研究进展[J].林业科学,2009,45(1):136-143. |
Xu M,Pan H X,Zhang B,et al.Molecular biology applied in the improvement process of forest trees[J].Scientia Silvae Sinicae,2009,45(1):136-143. | |
21 | 张启军,吕川根,虞德容,等.水稻抗病基因聚合育种研究进展[J].中国农学通报,2008,24(8):57-62. |
Zhang Q J,Lv C G,Yu D R,et al.Progress on the research of pyramiding resistant genes in rice[J].Chinese Agricultural Science Bulletin,2008,24(8):57-62. | |
22 | 王朔,黄海娇,杨光,等.转基因白桦杂种T1代的生长发育及AP1基因的遗传分析[J].北京林业大学学报,2016,38(9):1-7. |
Wang S,Huang H J,Yang G,et al.Growth and developmental analysis of T1 generation from BpAP1 transgenic birch[J].Journal of Beijing forestry university,2016,38(9):1-7. | |
23 | 周静,弭晓菊,崔继哲.植物转基因的非孟德尔遗传[J].分子植物育种,2006,4(5):614-620. |
Zhou J,Mi X J,Cui J Z.Non-mendelian inheritance of transgenes in plants[J].Molecular Plant Breeding,2006,4(5):614-620. | |
24 | Peña L,Martín-Trillo M,Juárez J,et al.Constitutive expression of ArabidopsisLEAFY or APETALA1 genes in citrus reduces their generation time[J].Nature Biotechnology,2001,19(3):263-267. |
25 | Kotoda N,Wada M,Kusaba S,et al.Overexpression of MdMADS5,an APETALA1-like gene of apple,causes early flowering in transgenic Arabidopsis[J].Plant Science,2002,162(5):679-687. |
26 | Yin Z,Plader W,Malepszy S.Transgene inheritance in plants[J].Journal of Applied Genetics,2004,45(2):127-144. |
[1] | Jianwei YANG, Zongyan LI, Yao FENG, Shuxian REN, Menglu HU, Songpu YE. Reproductive Biological Characteristics of Dendrobium chrysanthum [J]. Bulletin of Botanical Research, 2023, 43(1): 150-160. |
[2] | LIN Lin, GAO Yu-Ting, CHENG Fu-Shan, XIN Ben-Hua, WANG Gui-Chun, XIA Fu-Cai, MU Huai-Zhi. Seed Vigor of Different Half-sib Families in Betula schmidtii [J]. Bulletin of Botanical Research, 2020, 40(1): 125-132. |
[3] | SUN Feng-Kun, LI Si-Da, LI Ji-Xiang, CHEN Xiao-Hui, ZENG Fan-Suo. Effects of Exogenous Nitric Oxide on Exogenous Gene Expression and DNA Methylation in Transgenic Birch [J]. Bulletin of Botanical Research, 2017, 37(6): 870-875. |
[4] | WANG Guang-Yin;CHEN Bi-Hua;CHEN Qun;MO Yi-Fan;GAO Ai-Xia. The Induction for Adverse Temperature Tolerance During the Germination of Radish Seeds [J]. Bulletin of Botanical Research, 2008, 28(4): 482-485. |
[5] | MA Chuang;ZHANG Wen-Hui;LIU Xin-Cheng*. Effects of Iso-osmotic Potential Salt and Water Stress on the Seed Germination of Periploca sepium Bge [J]. Bulletin of Botanical Research, 2008, 28(4): 465-470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||