Bulletin of Botanical Research ›› 2022, Vol. 42 ›› Issue (4): 677-687.doi: 10.7525/j.issn.1673-5102.2022.04.017
• Physiology and Ecology • Previous Articles Next Articles
Shubing BAI, Xiaoyi XING, Wenyu GUAN, Li DONG()
Received:
2021-09-02
Online:
2022-07-20
Published:
2022-07-15
Contact:
Li DONG
E-mail:dongli@bjfu.edu.cn
About author:
BAI Shu-bing(1996-),female, postgraduate student, mainly engaged in research on garden plant cultivation and application
Supported by:
CLC Number:
Shubing BAI, Xiaoyi XING, Wenyu GUAN, Li DONG. Effects of Shouyun Iron Mine Abandoned Soil on the Growth of Two Sedum Species[J]. Bulletin of Botanical Research, 2022, 42(4): 677-687.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2022.04.017
Table 1
Basic condition of sampling sites
样地 Sample area | 土壤类型 Soil type | 海拔 Altitude /m | 北纬度 North latitude | 东经度 East longitude | 坡向 Slope direction |
---|---|---|---|---|---|
采矿区 Mining area | 裂隙裸岩及其风化物 Fractured bare rock and its weathering | 71 | 40°22′51.25″ | 117°0′42″ | 阳坡 Sunny slope |
排土场 Wastedump | 碎石夹杂少量土 The gravel was mixed with a small amount of soil | 208 | 40°23′11.86″ | 117°0′6″ | 阳坡 Sunny slope |
尾矿库 Tailing pond | 尾矿砂 Tailing sand | 222 | 40°22′48.54″ | 116°59′38″ | 阳坡 Sunny slope |
Table 2
Physicochemical properties of tested soils
土壤类型 Soil type | 对照土壤 Control soil | 采矿区土壤 Mining soil | 排土场土壤 Dump soil | 尾矿砂 Tailing sand |
---|---|---|---|---|
容重 Bulk density /(g·cm-3) | 0.66±0.02d | 0.96±0.12b | 0.90±0.08c | 1.22±0.02a |
总孔隙度 Total soil porosity /% | 52.50±0.11a | 40.35±0.06c | 46.35±0.02b | 39.6±0.07c |
持水孔隙度 Water-holding porosity /% | 49.35±0.11a | 36.45±0.05c | 40.57±0.04b | 33.15±0.09d |
通气孔隙度 Aeration porosity /% | 4.35±0.02c | 3.90±0.01d | 5.77±0.03b | 6.45±0.03a |
土壤含水量 Soil moisture /% | 46.50±1.23a | 22.00±2.43b | 22.70±2.12b | 15.50±1.26c |
pH | 6.83±0.04b | 6.87±0.03ab | 6.91±0.04a | 6.86±0.01ab |
有机质 Organic matter /(g·kg-1) | 3.05±0.38a | 0.43±0.21c | 0.62±0.18bc | 0.80±0.11b |
速效N Available N /(g·kg-1) | 17.32±1.16a | 9.54±0.33c | 10.20±1.03c | 13.20±0.43b |
全P Total P /(g·kg-1) | 0.07±0.01c | 0.10±0.01b | 0.14±0.01a | 0.03±0.01d |
速效K Available N /(mg·kg-1) | 243.23±1.67a | 245.58±1.44a | 192.12±0.17b | 52.14±1.11c |
Cd /(mg·kg-1) | — | — | — | — |
Pb /(mg·kg-1) | — | 1.29±0.05b | — | 8.64±0.45a |
Table 3
Effects of different types of wasteland soils on aboveground growth of two Sedum species
地上部指标 Shoot index | 品种 Variety | 对照土壤 Control soil | 采矿区土壤 Mining soil | 排土场土壤 Dump soil | 尾矿砂 Tailing sand |
---|---|---|---|---|---|
茎长 Shoot length /cm | 德国景天S. hybridum ‘Immergrunchen’ | 9.90±0.21a | 6.42±0.06b | 7.00±0.62b | 9.52±0.43a |
胭脂红景天S. spurium ‘Coccineum’ | 14.14±0.57a | 10.30±1.39b | 13.84±0.65a | 11.20±0.51b | |
分蘖数量 /个 Tiller number | 德国景天S. hybridum ‘Immergrunchen’ | 23.60±1.14a | 19.20±1.93b | 13.20±1.92c | 11.40±1.34c |
胭脂红景天S. spurium ‘Coccineum’ | 19.60±1.82a | 9.10±1.22c | 14.20±1.92b | 5.80±1.30d | |
地径 Stem diameter /cm | 德国景天S. hybridum ‘Immergrunchen’ | 0.13±0.01a | 0.13±0.01a | 0.12±0.01a | 0.10±0.01b |
胭脂红景天S. spurium ‘Coccineum’ | 0.13±0.01ab | 0.14±0.02a | 0.10±0.01bc | 0.09±0.01c | |
叶面积 Leaf area /cm2 | 德国景天S. hybridum ‘Immergrunchen’ | 2.21±0.12a | 1.87±0.05b | 1.45±0.09c | 1.80±0.02b |
胭脂红景天S. spurium ‘Coccineum’ | 0.85±0.04a | 0.31±0.01c | 0.49±0.07b | 0.23±0.02d | |
单叶鲜质量 Leaf fresh mass /g | 德国景天S. hybridum ‘Immergrunchen’ | 0.22±0.01a | 0.16±0.02b | 0.10±0.01c | 0.13±0.02bc |
胭脂红景天S. spurium ‘Coccineum’ | 0.06±0.00a | 0.02±0.00b | 0.02±0.00b | 0.01±0.00c | |
地上干质量 Shoot dry mass /g | 德国景天S. hybridum ‘Immergrunchen’ | 1.39±0.05a | 0.79±0.09b | 0.49±0.04c | 0.32±0.01d |
胭脂红景天S. spurium ‘Coccineum’ | 0.21±0.03a | 0.12±0.01b | 0.14±0.01b | 0.06±0.00c |
Table 4
Effects of different types of wasteland soils on underground root growth of two Sedum species
根系指标 Root index | 品种 Variety | 对照土壤 Control soil | 采矿区土壤 Mining soil | 排土场土壤 Dump soil | 尾矿砂 Tailing sand |
---|---|---|---|---|---|
总根长 Total root length /cm | 德国景天S. hybridum ‘Immergrunchen’ | 498.99±55.69a | 338.21±29.82b | 223.30±17.73c | 404.69±26.56ab |
胭脂红景天S. spurium ‘Coccineum’ | 196.49±14.06a | 96.65±13.87c | 184.99±17.10ab | 160.02±4.62b | |
根系总表面积 Root surface area /cm2 | 德国景天S. hybridum ‘Immergrunchen’ | 476.81±35.76a | 330.35±36.41b | 149.47±19.65c | 233.06±36.24bc |
胭脂红景天S. spurium ‘Coccineum’ | 51.97±12.32a | 27.30±5.03b | 39.10±9.58a | 41.89±1.83a | |
根系总体积 Root volume /cm3 | 德国景天S. hybridum ‘Immergrunchen’ | 53.44±9.95a | 21.06±6.99b | 10.85±2.26b | 14.72±5.77b |
胭脂红景天S. spurium ‘Coccineum’ | 1.35±0.31a | 0.65±0.06b | 0.87±0.05a | 0.87±0.05a | |
根平均直径 Mean root diameter /mm | 德国景天S. hybridum ‘Immergrunchen’ | 3.40±1.12a | 2.12±0.39b | 1.99±0.17b | 1.84±0.46b |
胭脂红景天S. spurium ‘Coccineum’ | 1.08±0.20a | 0.61±0.07b | 0.85±0.09a | 0.85±0.04a | |
根干质量 Root dry weight /g | 德国景天S. hybridum ‘Immergrunchen’ | 1.09±0.05a | 0.65±0.08b | 0.32±0.09c | 0.43±0.05c |
胭脂红景天S. spurium ‘Coccineum’ | 0.025±0.002a | 0.019±0.005b | 0.023±0.001a | 0.020±0.001ab | |
根冠比 Root-shoot ratio | 德国景天S. hybridum ‘Immergrunchen’ | 0.78±0.02b | 0.83±0.05b | 0.66±0.22b | 1.34±0.14a |
胭脂红景天S. spurium ‘Coccineum’ | 0.12±0.03c | 0.15±0.03b | 0.17±0.01b | 0.35±0.03a |
Table 5
Pearson correlation soil physical and chemical properties and the growth indexes of Sedums
指标 Index | 容重 Bulk density | 总孔隙度 Total soil porosity | 持水孔隙度 Water-holding porosity | 通气孔隙度 Aeration porosity | 土壤含水量 Soil moisture | pH | 有机质 Organic matter | 速效N Total N | 全P Total P | 速效K Total K |
---|---|---|---|---|---|---|---|---|---|---|
存活率 Survival rates | -0.887** | 0.920** | 0.921** | -0.343* | 0.828** | -0.162 | 0.884** | 0.758** | 0.787** | -0.897** |
茎长 Shoot length | -0.264 | 0.399* | 0.350* | 0.107 | 0.278 | -0.213 | 0.395* | 0.385* | 0.243 | -0.240 |
分蘖数量 Tiller number | -0.755** | 0.709** | 0.772** | -0.561** | 0.779** | -0.390* | 0.743** | 0.716** | 0.799** | -0.788** |
单叶鲜质量 Leaf fresh mass | -0.291 | 0.297 | 0.344* | -0.291 | 0.397* | -0.376* | 0.358* | 0.405** | 0.405** | -0.326* |
叶面积 Leaf area | -0.200 | 0.228 | 0.259 | -0.171 | 0.307 | -0.251 | 0.271 | 0.296 | 0.283 | -0.237 |
生物量 Biomass | -0.367* | 0.346* | 0.403** | -0.353* | 0.443** | -0.350* | 0.403** | 0.432** | 0.463** | -0.402* |
总根长 Total root length | -0.100 | 0.189 | 0.211 | -0.093 | 0.239 | -0.374* | 0.255 | 0.323* | 0.244 | -0.147 |
根表面积 Root surface area | -0.202 | 0.215 | 0.266 | -0.267 | 0.310 | -0.356* | 0.282 | 0.338* | 0.340* | -0.253 |
根平均直径 Mean root diameter | -0.291 | 0.349* | 0.360* | -0.166 | 0.401* | -0.276 | 0.376* | 0.388* | 0.356* | -0.321* |
根体积 Root volume | -0.312 | 0.355* | 0.391* | -0.265 | 0.424** | -0.386* | 0.410** | 0.450** | 0.431** | -0.358* |
根干质量 Root dry weight | -0.259 | 0.255 | 0.306 | -0.282 | 0.349* | -0.344* | 0.317* | 0.362* | 0.370* | -0.295 |
Table 6
The characteristic value and correlation of CCA ordination diagram of Sedum growth and soil factor
植物生长因子与土壤因子 Plant growth factor and soil factor | 第1排序轴 Axis 1 | 第2排序轴 Axis 2 | 第3排序轴 Axis 3 | 第4排序轴 Axis 4 |
---|---|---|---|---|
特征值 Eigenvalues | 0.026 6 | 0.004 2 | 0.001 6 | 0.000 4 |
植物生长与土壤的相关性 Correlation between plant growth and soil | 0.586 1 | 0.642 7 | 0.630 9 | 0.436 1 |
生长与土壤关系的变化累计比例 Explained fitted variation (cumulative) | 81.020 0 | 93.960 0 | 98.960 0 | 99.890 0 |
Table 7
The explains,contribution and significance test of CCA ordination axes of Sedum growth factor and soil factor
土壤因子 Soil factor | 解释率 Explains /% | 贡献率 Contribution /% | P |
---|---|---|---|
通气孔隙度 Aeration porosity | 12.4 | 36.2 | 0.012 |
土壤含水量 Soil moisture | 8.6 | 25.1 | 0.036 |
总孔隙度 Total soil porosity | 5.0 | 14.7 | 0.082 |
pH | 4.6 | 13.5 | 0.114 |
容重 Bulk density | 2.9 | 8.5 | 0.228 |
持水孔隙度 Water-holding porosity | 0.7 | 2.0 | 0.686 |
1 | KUMAR A, MAITI S K.Assessment of potentially toxic heavy metal contamination in agricultural fields,sediment,and water from an abandoned chromite-asbestos mine waste of Roro hill,Chaibasa,India[J]. Environmental Earth Sciences,2015,74(3):2617-2633. |
2 | SKOUSEN J, ZIPPER C E.Post-mining policies and practices in the eastern USA coal region[J].International Journal of Coal Science & Technology,2014,1(2):135-151. |
3 | LIU R Q,LAL R.A laboratory study on amending mine soil quality[J].Water,Air & Soil Pollution,2013,224(9):1679. |
4 | TOOMIK A, LIBLIK V.Oil shale mining and processing impact on landscapes in North-East Estonia[J].Landscape and Urban Planning,1998,41(3/4):285-292. |
5 | LI M S.Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China:a review of research and practice[J].Science of the Total Environment,2006,357(1-3):38-53. |
6 | ROTKITTIKHUN P, CHAIYARAT R, KRUATRACHUE M,et al.Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer:a glasshouse study[J].Chemosphere,2007,66(1):45-53. |
7 | 宋书巧,周永章.矿业废弃地及其生态恢复与重建[J].矿产保护与利用,2001,(5):43-49. |
SONG S Q, ZHOU Y Z.Mining wasteland and its ecological restoration and reconstruction[J].Conservation and Utilization of Mineral Resources,2001,(5):43-49. | |
8 | 高彦鑫,冯金国,唐磊,等.密云水库上游金属矿区土壤中重金属形态分布及风险评价[J].环境科学,2012,33(5):1707-1717. |
GAO Y X, FENG J G, TANG L,et al.Fraction distribution and risk assessment of heavy metals in iron and gold mine soil of Miyun reservoir upstream[J].Environmental Science,2012,33(5):1707-1717. | |
9 | 李倩,秦飞,季宏兵,等.北京市密云水库上游金矿区土壤重金属含量、来源及污染评价[J].农业环境科学学报,2013,32(12):2384-2394. |
LI Q, QIN F, JI H B,et al.Contents,sources and contamination assessment of soil heavy metals in gold mine area of upstream part of Miyun reservoir,Beijing,China[J].Journal of Agro-Environment Science,2013,32(12):2384-2394. | |
10 | 廖海军.北京市密云水库上游土壤重金属污染调查评价[J].城市地质,2007,2(3):31-34. |
LIAO H J.Investigation and assessment of pollution of heavy metals in the soil of the upstream area of Miyun reservoir,Beijing[J].Urban Geology,2007,2(3):31-34. | |
11 | ZHANG Q Q, ZHANG T Z, LIU X.Index system to evaluate the quarries ecological restoration[J].Sustainability,2018,10(3):619. |
12 | 李锐丽.北京地区岩石园营建及岩生植物选择研究[D].北京:北京林业大学,2008. |
LI R L.Studies on building rock garden and selecting rock plants in Beijing area[D].Beijing:Beijing Forestry University,2008. | |
13 | 孙丽萍.几种景天科植物扦插繁殖研究[J].北方园艺,2012(2):76-78. |
SUN L P.Research on cutting propagation of several crassulaceae plants[J].Northern Horticulture,2012(2):76-78. | |
14 | 余莉.几种地被植物的引种栽培及适应性研究[D].北京:北京林业大学,2005. |
YU L.Study of cultivation and adaptability of several introduced ground covers[D].Beijing:Beijing Forestry University,2005. | |
15 | GRAVATT D A, MARTIN C E.Comparative ecophysiology of five species of Sedum(Crassulaceae) under well-watered and drought-stressed conditions[J].Oecologia,1992,92(4):532-541. |
16 | HABIBI G, HAJIBOLAND R.Comparison of photosynthesis and antioxidative protection in Sedum album and Sedum stoloniferum(Crassulaceae) under water stress[J].Photosynthetica,2012,50(4):508-518. |
17 | 荆瑞,张洁,尹德洁,等.6个矮型景天的抗寒能力比较[C]//中国观赏园艺研究进展2016.长沙:中国园艺学会,2016:292-299. |
JING R, ZHANG J, YIN D J,et al.The contrastive research to cold resistance of six different sedums[C]//Progress in orchental horticulture research in China 2016.Changsha:Chinese Society for Horticultural Science,2016:292-299. | |
18 | 田晓艳,刘延吉,张蕾,等.4种景天属植物抗盐胁迫能力的差异[J].草原与草坪,2010,30(3):57-60. |
TIAN X Y, LIU Y J, ZHANG L,et al.Effects of salt stress on four Sedum species[J].Grassland and Turf,2010,30(3):57-60. | |
19 | 侯雅琼.盐碱胁迫下四种景天属植物的生理响应及适应性研究[D].呼和浩特:内蒙古农业大学,2012. |
HOU Y Q.Studies on physiological response and adaptability under saline-alkali stress in Sedum plants[D].Huhhot:Inner Mongolia Agricultural University,2012. | |
20 | 吴彬艳,邵冰洁,赵惠恩,等.11种广义景天属植物对Cd的耐性和积累特性[J].环境科学学报,2017,37(5):1947-1956. |
WU B Y, SHAO B J, ZHAO H E,et al.Cd accumulation and tolerance characteristics of 11 species in Sedum sensu lato [J].Acta Scientiae Circumstantiae,2017,37(5):1947-1956. | |
21 | YANG W H, WANG S S, NI W Z,et al.Enhanced Cd-Zn-Pb-contaminated soil phytoextraction by Sedum alfredii and the rhizosphere bacterial community structure and function by applying organic amendments[J].Plant and Soil,2019,444(1/2):101-118. |
22 | 魏述艳.矿山废弃地立地条件类型划分与评价——以北京首云铁矿为例[D].北京:北京林业大学,2010. |
WEI S Y.Classifying and estimating for site type of mines wasteland:a case study on the Shouyun iron ore in Beijing[D].Beijing:Beijing Forestry University,2010. | |
23 | 赵方莹.北京铁矿废弃地植被恢复技术与效应研究[D].北京:北京林业大学,2008. |
ZHAO F Y.A study on revegetating techniques and effects in iron ore wastelands in Beijing[D].Beijing:Beijing Forestry University,2008. | |
24 | BYRNE P J, CARTY B.Developments in the measurement of air filled porosity of peat substrates[J].Acta Horticulturae,1989,238:37-44. |
25 | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000. |
LU R K.Anlytical methods of soil agricultural chemistry[M].Beijing:China Agricultural Science and Technology Press,2000. | |
26 | 张华.北京房山区黄院采石场松散堆积体生态修复技术研究[D].北京:北京林业大学,2013. |
ZHANG H.Study on the technology of ecological restoration in Huangyuan village quarry loose deposits of Beijing Fangshan Region[D].Beijing:Beijing Forestry University,2013. | |
27 | CASSELMAN C N, FOX T R, BURGER J A,et al.Effects of silvicultural treatments on survival and growth of trees planted on reclaimed mine lands in the Appalachians[J].Forest Ecology and Management,2006,223(1/2/3):403-414. |
28 | CATERINO B, SCHULER J L, GRUSHECKY S T,et al.Early growth and survival of shrub willow on newly reclaimed mine soil[J].New Forests,2020,51(6):1087-1099. |
29 | RUCKER K S, KVIEN C K, HOLBROOK C C,et al.Identification of peanut genotypes with improved drought avoidance traits[J].Peanut Science,1995,22(1):14-18. |
30 | ZHAO T J, SUN S, LIU Y,et al.Regulating the Drought-responsive Element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus [J].Journal of Biological Chemistry,2006,281(16):10752-10759. |
31 | 张莹,张玲,刘泓,等.柳树6个无性系在铜尾矿砂中的生长及耐受性差异[J].林业科学研究,2017,30(6):936-945. |
ZHANG Y, ZHANG L, LIU H,et al.Variations in growth and tolerance of six willow clones in copper tailings soils[J].Forest Research,2017,30(6):936-945. | |
32 | 田胜尼,刘登义,彭少麟,等.5种豆科植物对铜尾矿的适应性研究[J].环境科学,2004,25(3):138-143. |
TIAN S N, LIU D Y, PENG S L,et al.Studies on the adaptation of five legumes species to copper tailings[J].Environmental Science,2004,25(3):138-143. | |
33 | 张鸿龄,孙丽娜,马国峰,等.北方地区铁矿废弃地基质改良及植被恢复技术[J].生态学杂志,2018,37(10):3130-3136. |
ZHANG H L, SUN L N, MA G F,et al.Techniques for substrate amelioration and revegetation of iron mine wasteland in northern China[J].Chinese Journal of Ecology,2018,37(10):3130-3136. | |
34 | HANSSON K, HELMISAARI H S, SAH S P,et al.Fine root production and turnover of tree and understorey vegetation in Scots pine,silver birch and Norway spruce stands in SW Sweden[J].Forest Ecology and Management,2013,309:58-65. |
35 | BENIGNO S M, DIXON K W, STEVENS J C.Increasing soil water retention with native-sourced mulch improves seedling establishment in Postmine Mediterranean sandy soils[J].Restoration Ecology,2013,21(5):617-626. |
36 | OHSOWSKI B M, KLIRONOMOS J N, DUNFIELD K E,et al.The potential of soil amendments for restoring severely disturbed grasslands[J].Applied Soil Ecology,2012,60:77-83. |
37 | BAINBRIDGE D A.Alternative irrigation systems for arid land restoration[J].Ecological Restoration,2002,20(1):23-30. |
[1] | Ying WANG, Hong-Bo XU, Yang WANG, Meng-Qian WANG, Cheng-Zhong WANG, Yuan-Sen YIN, Xue SUN, Hui ZHOU, Li-Huan ZHUO. Difference of Tolerance to Heavy Metal Zinc Stress of Five Sedum Plants [J]. Bulletin of Botanical Research, 2021, 41(6): 982-992. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||