Bulletin of Botanical Research ›› 2021, Vol. 41 ›› Issue (3): 449-457.doi: 10.7525/j.issn.1673-5102.2021.03.016
• Research report • Previous Articles Next Articles
Dong ZHANG1,2, Yan LIU1(), Han ZHANG1, Zi-Jian ZHANG1, Yang WANG1, Mei-Cen LIU1
Received:
2020-01-14
Online:
2021-05-20
Published:
2021-03-24
Contact:
Yan LIU
E-mail:zgnly@163.com
About author:
ZHANG Dong(1993—),male,PhD candidate,mainly engaged in the conservation of horticultural plant germplasm resources and the physiological study of plant stress.
Supported by:
CLC Number:
Dong ZHANG, Yan LIU, Han ZHANG, Zi-Jian ZHANG, Yang WANG, Mei-Cen LIU. Response of Photosynthesis and Leaf Morphological Characteristics to Drought Stress in Glycyrrhiza uralensis[J]. Bulletin of Botanical Research, 2021, 41(3): 449-457.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2021.03.016
PlateⅠ
Morphological changes of single stomata in the upper epidermis of G. uralensis leaves under drought stressA.Stomata distribution of upper epidermis of young leaves under normal water supply;B.Stomata distribution of lower epidermis of young leaves under normal water supply;C-F.Stomata different forms;G.Distribution of upper epidermis glands on the young leaves with normal water supply;H.Distribution of lower epidermis glands on the young leaves with normal water supply;I-K.Secrete gland different forms;L.Glandular trichome morphology s.Stomata;sg.Secrete gland;gt.Glandular trichome
Table1
Leaf epidermal morphology of G. uralensis under drought stress
材料 Material | 处理 Treatment | 上表皮密度 Stomatal density of upper epidermis (个·mm-2) | 下表皮密度 Stomatal density of lower epidermis (个·mm-2) | 上表皮开张比 Porosity opening ratio of upper epidermis(%) | 下表皮开张比 Porosity opening ratio of lower epidermis(%) | 上表皮开张宽度 Stomatal opening width of upper epidermis(μm) | 下表皮开张宽度 Stomatal opening width of lower epidermis(μm) |
---|---|---|---|---|---|---|---|
新叶 Young leaves | CK | 75.3±4.5b | 216.7±4.5ab | 46.0±1.0b | 34. 7±1.5b | 1.36±0.05b | 2.14±0.05a |
LS | 91.3±5.1a | 224±2.6a | 53. 7±1.5a | 48.0±2.0a | 1.72±0.04a | 1.74±0.05b | |
MS | 66.7±3.5bc | 203.7±3.5bc | 44.3±1.2b | 30.7±2.1b | 0.78±0.04c | 0.60±0.03c | |
SS | 61.7±4.7c | 180.7±3.1c | 38.3±1.5c | 13.7±1.5c | 0.58±0.03d | 0.52±0.01c | |
成熟叶 Mature leaves | CK | 71.3±4.5b | 260±3.0a | 68. 7±1.5a | 57.33±0.6b | 1.92±0.04a | 2.4±0.1a |
LS | 104.7±6.5a | 201.3±4.2b | 71.3±1.5a | 73.33±1.5a | 1.89±0.03a | 2.1±0.02b | |
MS | 87.7±2.5b | 142.3±1.5c | 30.7±2.5b | 51±1.0b | 1.15±0.05b | 0.77±0.03c | |
SS | 38.3±3.5c | 213.3±2.5b | 22.3±2.5c | 10.33±1.5c | 0.95±0.05c | 0.73±0.04c | |
衰老叶 Aging leaves | CK | 76.3±2.5a | 167.3±2.5a | 58±2.0b | 23.67±1.5b | 1.18±0.03b | 0.98±0.02a |
LS | 62.7±2.5b | 141.3±3.5b | 67.7±1.2a | 29±1.0a | 1.38±0.03a | 0.94±0.03a | |
MS | 46.3±3.5c | 173.7±2.5a | 21±2.6c | 12.33±1.5cd | 0.78±0.03c | 0.71±0.02bc | |
SS | 24.0±3.6d | 163.7±4.0a | 17.7±0.6c | 7.67±1.5d | 0.77±0.03c | 0.58±0.03c |
Table 2
Epidermal gland density in leaves of G. uralensis under drought stress
材料 Material | 处理 Treatment | 上表皮 Upper epidermis (ind.·mm-2) | 下表皮 Lower epidermis (ind.·mm-2) | 表皮 Epidermis (ind.·mm-2) |
---|---|---|---|---|
新叶 Young leaves | CK | 2.18±0.15c | 5.08±0.23c | 7.26±0.12c |
LS | 2.18±0.44c | 7.63±0.15ab | 9.81±0.58b | |
MS | 3.63±0.44b | 6.17±0.15c | 9.80±0.44b | |
SS | 5.16±0.38a | 8.35±0.15a | 13.51±0.52a | |
成熟叶 Mature leaves | CK | 2.98±0.44a | 4.79±0.58c | 7.77±0.58c |
LS | 3.50±0.15bc | 5.48±0.44a | 8.98±0.65bc | |
MS | 1.96±0.22b | 5.81±0.36c | 7.77±0.44c | |
SS | 1.16±0.30c | 7.63±0.22b | 8.79±0.22a | |
衰老叶 Aging leaves | CK | 0.87±0.15bc | 4.54±0.44b | 5.41±0.15b |
LS | 1.69±0.22b | 3.60±0.30c | 5.29±0.22b | |
MS | 1.23±0.15b | 3.85±0.22b | 5.08±0.29b | |
SS | 2.40±0.36a | 6.90±0.44a | 9.30±0.36a |
Table 3
Epidermal glandular trichome density in leaves of G. uralensis under drought stress
材料 Material | 处理 Treatment | 上表皮 Upper epidermis (ind./mm2) | 下表皮 Lower epidermis (ind./mm2) | 表皮 Epidermis (ind./mm2) |
---|---|---|---|---|
新叶 Young leaves | CK | 5.81±0.44bc | 4.72±0.36c | 10.53±0.73c |
LS | 3.63±0.36c | 3.63±0.22c | 17.26±0.94b | |
MS | 11.98±0.58a | 10.89±0.58a | 22.88±0.91a | |
SS | 2.18±0.22c | 9.08±0.73ab | 11.26±0.58c | |
成熟叶 Mature leaves | CK | 3.99±0.29b | 5.08±0.51c | 9.08±0.36b |
LS | 1.09±0.15c | 5.45±0.44c | 6.54±0.29c | |
MS | 5.08±0.44b | 22.50±0.87a | 27.60±0.44a | |
SS | 9.80±0.80a | 17.79±0.94b | 27.60±0.80a | |
衰老叶 Aging leaves | CK | 5.08±0.36b | 5.08±0.51b | 10.17±0.15b |
LS | 9.80±0.22a | 2.54±0.29c | 12.35±0.22a | |
MS | 4.36±0.22b | 5.45±0.36b | 9.80±0.58b | |
SS | 1.45±0.15c | 8.35±0.65a | 9.80±0.44b |
1 | Jenks M A,Joly R J,Peters P J,et al.Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench[J].Plant Physiology,1994,105(4):1239-1245. |
2 | Riederer M,Schneider G.The effect of the environment on the permeability and composition of citrus leaf cuticles:Ⅱ.composition of soluble cuticular lipids and correlation with transport properties[J].Planta,1990,180(2):154-165. |
3 | Champagne A,Boutry M.Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species[J].Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics,2016,1864(8):1039-1049. |
4 | Chen G X,Komatsuda T,Ma J F,et al.A functional cutin matrix is required for plant protection against water loss[J].Plant Signaling & Behavior,2011,6(9):1297-1299. |
5 | Castillo L,Díaz M,González-Coloma A,et al.Clytostoma callistegioides(Bignoniaceae) wax extract with activity on aphid settling[J].Phytochemistry,2010,71(17-18):2052-2057. |
6 | Hansjakob A,Bischof S,Bringmann G,et al.Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner[J].New Phytologist,2010,188(4):1039-1054. |
7 | 魏志刚,王玉成.植物干旱胁迫响应机制[M].北京:科学出版社,2015. |
Wei Z G,Wang Y C.Response mechanism of drought stress in plants[M].Beijing:Science Press,2015. | |
8 | 傅书遐,傅坤俊.中国植物志[M].北京:科学出版社,1998:167-175. |
Fu S X,Fu K J.Flora of China[M].Beijing:Science Press,1998:167-175. | |
9 | 耿广琴,谢晓蓉.旱盐双重胁迫对乌拉尔甘草幼苗生理生化特性的影响[J].草业科学,2018,35(9):2166-2173. |
Geng G Q,Xie X R.Effect of drought and salt stress on the physiological and biochemical characteristics of Glycyrrhiza uralensis[J].Pratacultural Science,2018,35(9):2166-2173. | |
10 | 王妍,杨世海.双重胁迫对乌拉尔甘草种子萌发及幼苗生理特性的影响[J].中药材,2018,41(11):2507-2510. |
Wang Y,Yang S H.Effects of double stress on seed germination and seedling physiological characteristics of glycyrrhiza uralensis[J].Journal of Chinese Medicinal Materials,2018,41(11):2507-2510. | |
11 | 张晓佳,解植彩,张文晋,等.短小芽孢杆菌对盐胁迫下甘草生长及抗氧化系统的影响[J].时珍国医国药,2019,30(3):688-691. |
Zhang X J,Xie Z C,Zhang W J,et al.Effect of Bacillus pumilus on growth and antioxidant system of Glycyrrhiza uralensis under salt stress[J].Lishizhen Medicine and Materia Medica Research,2019,30(3):688-691. | |
12 | 沈步芳,李予霞,马淼,等.2种药用甘草种子对盐渍环境的萌发响应及其甘草酸含量变化[J].江苏农业科学,2018,46(10):111-116. |
Shen B F,Li Y X,Ma M,et al.Germination responses of two kinds of medicinal liquorice seeds to saline environments and changes of glycyrrhizic acid content[J].Jiangsu Agricultural Sciences,2018,46(10):111-116. | |
13 | 王建寰,张文晋,郎多勇,等.硅对盐胁迫下甘草非药用部位总黄酮、总皂苷积累动态的影响[J].世界科学技术-中医药现代化,2018,20(7):1251-1255. |
Wang J H,Zhang W J,Lang D Y,et al.Effects of silicon on the accumulation of total flavonoids and total Saponins of non-medicinal parts of Glvarrhiza uralensis Fisch.under salt stress[J].World Science and Technology-Modernization of Traditional Chinese Medicine and Materia Medica,2018,20(7):1251-1255. | |
14 | 卡迪尔·阿布都热西提,刘晓,任坚毅,等.盐生植物胀果甘草和光果甘草对UV-B以及盐胁迫的不同响应[J].基因组学与应用生物学,2018,37(6):2527-2536. |
Abdulrashid K,Liu X,Ren J Y,et al.Different responses of halophytes plants Glycyrrhiza inflata Bat.and Glycyrrhiza glabra L.to UV-B radiation and salt stress[J].Genomics and Applied Biology,2018,37(6):2527-2536. | |
15 | 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2015:22-24. |
Bao S D.Soil agrochemical analysis[M].3rd ed.Beijing:China Agricultural Press,2015:22-24. | |
16 | 李柏年,高金城,陈茨珀.植物叶片扫描电镜样品制备[J].植物学通报,1988,5(2):119-121. |
Li B N,Gao J C,Chen C B.Preparation of SEM samples of plant leaves[J].Chinese Bulletin of Botany,1988,5(2):119-121. | |
17 | 王瑞丽,于贵瑞,何念鹏,等.气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例[J].生态学报,2016,36(8):2175-2184. |
Wang R L,Yu G R,He N P,et al.Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain[J].Acta Ecologica Sinica,2016,36(8):2175-2184. | |
18 | Hetherington A M,Ian Woodward F.The role of stomata in sensing and driving environmental change[J].Nature,2003,424(6951):901-908. |
19 | 冮慧欣,王嘉琪,黄春岩,等.8种绿化树种光合特性及叶片解剖结构比较[J].植物研究,2019,39(1):10-16. |
Jiang H X,Wang J Q,Huang C Y,et al.Photosynthetic characteristics and leaf anatomical structure of eight tree species[J].Bulletin of Botanical Research,2019,39(1):10-16. | |
20 | Geisler M,Nadeau J,Sack F D.Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation[J].Plant Cell,2000,12(11):2075-2086. |
21 | 张风娟,李健,杜成忠,等.不同甘蔗品种叶片气孔对水分胁迫的响应[J].广西植物,2014,34(6):821-827. |
Zhang F J,Li J,Du C Z,et al.Stomatal response to water stress in leaves of different sugarcane cultivars[J].Guihaia,2014,34(6):821-827. | |
22 | Ticha I.Photosynthetic characteristics during on togenesis of leaves.7.Stomata density and sizes[J].Photosynthetica,1982,16(3):375-471. |
23 | 徐萍,李进,吕海英,等.干旱胁迫下水杨酸对银沙槐子叶表皮气孔开度的影响[J].植物生理学报,2014,50(4):510-518. |
Xu P,Li J,Lv H Y,et al.Effect of Salicylic acid on stomata aperture of epidermis in Ammodendron argenteum cotyled under drought stress[J].Plant Physiology Journal,2014,50(4):510-518. | |
24 | 王孝威,段艳红,曹慧,等.水分胁迫对短枝型果树光合作用的非气孔限制[J].西北植物学报,2003,23(9):1609-1613. |
Wang X W,Duan Y H,Cao H,et al.The photosynthetic nonstomatal limitatoin of spur-apple yong trees under water stress[J].Acta Botanica Boreali-Occidentalia Sinica,2003,23(9):1609-1613. | |
25 | 陈倩倩,范阳阳,郝影宾,等.不同土壤水分含量对玉米气孔发育过程和蒸腾耗水量的影响[J].干旱地区农业研究,2011,29(3):75-79,95. |
Chen Q Q,Fan Y Y,Hao Y B,et al.Effects of different soil water content on stomata development and water consumption of maize[J].Agricultural Research in the Arid Areas,2011,29(3):75-79,95. | |
26 | 张晓艳,杨惠敏,侯宗东,等.土壤水分和种植密度对春小麦叶片气孔的影响[J].植物生态学报,2003,27(1):133-136. |
Zhang X Y,Yang H M,Hou Z D,et al.Stomatal densities and distributions of spring wheat leaves under different planting densities and soil moisture levels[J].Acta Phytoecologica Sinica,2003,27(1):133-136. | |
27 | 杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J].植物生态学报,2001,25(3):312-316. |
Yang H M,Wang G X.Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment[J].Acta Phytoecologica Sinica,2001,25(3):312-316. | |
28 | 赵姝丽,陈温福,徐正进.水分胁迫对水稻剑叶气孔特性的影响[J].华北农学报,2010,25(1):170-174. |
Zhao S L,Chen W F,Xu Z J.The effects of drought stress on stomatal characters of rice leaf[J].Acta Agriculturae Boreali-Sinica,2010,25(1):170-174. | |
29 | 齐红岩,刘洋,刘海涛.水分亏缺对番茄叶片气孔特性及叶绿体超微结构的影响[J].西北植物学报,2009,29(1):9-15. |
Qi H Y,Liu Y,Liu H T.Effect of water deficit on stomatal characteristics and ultrastructure of chloroplast in tomato leaves[J].Acta Botanica Boreali-Occidentalia Sinica,2009,29(1):9-15. | |
30 | 高彦萍,冯莹,马志军,等.水分胁迫下不同抗旱类型大豆叶片气孔特性变化研究[J].干旱地区农业研究,2007,25(2):77-79. |
Gao Y P,Feng Y,Ma Z J,et al.Stomatal character changes of soybean leaves under water stress[J].Agricultural Research in the Arid Areas,2007,25(2):77-79. | |
31 | 杨九艳,杨劼,杨明博,等.鄂尔多斯高原锦鸡儿属植物叶表皮特征及生态适应性[J].植物生态学报,2005,29(6):961-967. |
Yang J Y,Yang J,Yang M B,et al.Characteristics of the leaf epidermis of Caragana plants on the ordos plateau and their ecological adaptations[J].Acta Phytoecologica Sinica,2005,29(6):961-967. | |
32 | 杨九艳,杨劼,杨明博,等.5种锦鸡儿属植物渗透调节物质的变化[J].内蒙古大学学报:自然科学版,2005,36(6):677-682. |
Yang J Y,Yang J,Yang M B,et al.Changes of osmotic adjustment solute content of the 5 species in Caragana Genus[J].Acta Scientiarum Naturalium Universitatis Neimongol,2005,36(6):677-682. | |
33 | 宋玉霞,郭生虎,马洪爱.贺兰山15种旱生灌木叶表皮扫描电镜观察[J].西北植物学报,2003,23(7):1283-1287. |
Song Y X,Guo S H,Ma H A.Observation of leaf epidermis of 15 species shrubs in Helanshan mountain by SEM[J].Acta Botanica Boreali-Occidentalia Sinica,2003,23(7):1283-1287. | |
34 | Randhawa M A,Sahi S T,Ilyas M B,et al.Comparative assessment of density of glandular hairs,population and size of aperture of stomata in resistant and susceptible cultivars of chickpea to Ascochyta blight disease[J].Pakistan Journal of Botany,2009,41(1):121-129. |
35 | Galmés J,Medrano H,Flexas J.Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J].New Phytologist,2007,175(1):81-93. |
36 | 张志焕,韩敏,张逸,等.水分胁迫对不同抗旱性砧木嫁接番茄生长发育及水气交换参数的影响[J].中国农业科学,2017,50(2):391-398. |
Zhang Z H,Han M,Zhang Y,et al.Effect of water stress on development and H2O and CO2 exchange in leaves of tomato grafted with different drought resistant rootstocks[J].Scientia Agricultura Sinica,2017,50(2):391-398. | |
37 | 谢深喜,刘强,熊兴耀,等.水分胁迫对柑橘光合特性的影响[J].湖南农业大学学报:自然科学版,2010,36(6):653-657. |
Xie S X,Liu Q,Xiong X Y,et al.Effect of water stress on Citrus photosynthesis characteristic[J].Journal of Hunan Agricultural University:Natural Sciences,2010,36(6):653-657. | |
38 | Valladares F,Pearcy R W.Drought can be more critical in the shade than in the sun:a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Niño year[J].Plant,Cell & Environment,2002,25(6):749-759. |
39 | Ohashi Y,Nakayama N,Saneoka H,et al.Effects of drought stress on photosynthetic gas exchange,chlorophyll fluorescence and stem diameter of soybean plants[J].Biologia Plantarum,2006,50(1):138-141. |
[1] | Tingting LI, Liu YANG, Xiaoxia LI, Yisong WANG, Xiuwei WANG. Different Nitrogen Forms on the Photosynthetic Characteristics and Growth of Fraxinus mandshurica and Quercus mongolica [J]. Bulletin of Botanical Research, 2023, 43(2): 207-217. |
[2] | Xuefeng HAO, Chunxia KANG, Yanxi PEI, Zhuping JIN. The Mechanism of H2S Signal and Ca2+ Regulating Stomatal Movement in Medicago sativa [J]. Bulletin of Botanical Research, 2023, 43(2): 281-287. |
[3] | Mengshuo LI, Yingze LIU, Huan LU, Sheng QIANG. Photosynthetic Capacity Differentiation and Gene Transcription in Different Geographical Populations of Arabidopsis thaliana under Common Garden conditions [J]. Bulletin of Botanical Research, 2023, 43(1): 90-99. |
[4] | Jun LI, Yaping DUAN, Xiuzhen CAI, Ting WANG, Baihan PAN. Application of Cuticular Micromorphology of the Cuticle of Pinus Needles in Taxonomy [J]. Bulletin of Botanical Research, 2022, 42(3): 341-351. |
[5] | Xiwu DU, Jun QIN, Kang YE, Yonghong HU, Yiwei TAO, Yongzheng PENG, Yanxiang SHEN, Yan LIANG, Li ZENG. Effects of Flooding Stress on Photosynthetic Characteristics of Yulania stellata and Its Cultivars [J]. Bulletin of Botanical Research, 2022, 42(3): 483-491. |
[6] | Bin WEI, Yi LI, Shiping SU. The Effect of Exogenous Proline on the Stomata of Nitraria tangutorum Leaves under Natural Drought [J]. Bulletin of Botanical Research, 2022, 42(3): 492-501. |
[7] | Feng HE, Hong-Yan DU, Pan-Feng LIU, Lu WANG, Jun QING, Lan-Ying DU. Effects of Drought Stress on Leaf Structure of Eucommia ulmoides [J]. Bulletin of Botanical Research, 2021, 41(6): 947-956. |
[8] | Shuang-Hui TIAN, He CHENG, Yang ZHANG, Cong LIU, De-An XIA, Zhi-Gang WEI. Genome-wide Identification and Expressional Analysis of Carotenoid Cleavage Dioxygenases(CCD) Gene Family in Populus trichocarpa under Drought and Salt Stress [J]. Bulletin of Botanical Research, 2021, 41(6): 993-1005. |
[9] | Fang WANG, Zhi-Min LU, Jun WANG, Shi-Kai ZHANG, Yu-Xi LI, Shao-Chen LI, Jian-Qiu ZHANG, Yu-Chun YANG. Photosynthetic and Stomatal Characteristics of Pinus koraiensis and P.sibirica under Low Temperature Stress [J]. Bulletin of Botanical Research, 2021, 41(2): 205-212. |
[10] | Xiao-Chi YU, Gui-Juan YANG, Ju-Lan DONG, Jun-Hui WANG, Wen-Jun MA, Peng ZHANG. Physiological Responses to Drought Stress of Five Speciesfrom Catalpa Scop [J]. Bulletin of Botanical Research, 2021, 41(1): 44-52. |
[11] | Wen-Hai HU, Xiao-Hong YAN, Xiao-Hong LI, Zao-Gui CAO. Effects of 24-Epibrassinolide on the Chlorophyll Fluorescence Transient in Leaves of Pepper under Drought Stress [J]. Bulletin of Botanical Research, 2021, 41(1): 53-59. |
[12] | ZHAO Chun-Jian, LI Yu-Zheng, GUAN Jia-Jing, SU Wei-Ran, TIAN Yao, WANG Ting-Ting, LI Shen, LI Chun-Ying. Effect of Interplanting Taxus cuspidata with Ficus carica on Growth of Two Plants and Activities of Soil Enzymes [J]. Bulletin of Botanical Research, 2020, 40(5): 679-685. |
[13] | FANG Zi-Wen, ZHANG Xia-Yan, TAO Jun, ZHAO Da-Qiu. Ameliorative Effect of Ferulic Acid on Paeonia ostii under Drought Stress [J]. Bulletin of Botanical Research, 2020, 40(3): 353-359. |
[14] | QIAO Bin-Jie, WANG De-Qiu, GAO Hai-Yan, LI Zhao-Min, GE Li-Li, DING Wen-Ya, ZHAO Xi-Yang. Photosynthetic and Stomatal Morphological Variation of Poplar Clones in Seedling Stage under Drought Stress [J]. Bulletin of Botanical Research, 2020, 40(2): 177-188. |
[15] | ZHAO Min, HAO Wen-Ying, NING Xin-Zhe, HAO Long-Fei, YAN Hai-Xia, MU Ya-Nan, BAI Shu-Lan. Screening of Excellent Ectomycorrhizal Fungi-tree for Drought Resistant with Pinus sylvestris var. mongolica [J]. Bulletin of Botanical Research, 2020, 40(1): 133-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||