植物研究 ›› 2024, Vol. 44 ›› Issue (2): 248-258.doi: 10.7525/j.issn.1673-5102.2024.02.010
徐晶1,2, 崔莹2, 王福森3, 李开隆1, 曲冠证1, 赵曦阳2()
收稿日期:
2023-08-25
出版日期:
2024-03-20
发布日期:
2024-03-11
通讯作者:
赵曦阳
E-mail:zhaoxyphd@163.com
作者简介:
徐晶(1997—),女,硕士研究生,主要从事杨树高效培育研究。
基金资助:
Jing XU1,2, Ying CUI2, Fusen WANG3, Kailong LI1, Guanzheng QU1, Xiyang ZHAO2()
Received:
2023-08-25
Online:
2024-03-20
Published:
2024-03-11
Contact:
Xiyang ZHAO
E-mail:zhaoxyphd@163.com
摘要:
探究不同间伐强度对青山杨人工林生长及木材性状的影响,为东北地区培育杨树优质工业资源材提供理论基础。以18年生青山杨为试验材料,以初植株行距2 m×3 m为对照,设置3种强度的间伐处理(4 m×3 m、 6 m×3 m、4 m×6 m)。间伐后第5年对试验林的生长性状(树高、胸径、2米径、冠幅)及木材性状(基本密度、纤维长、纤维宽、半纤维素含量、纤维素含量、综纤维素含量、木质素含量)进行了测定,并利用树高、胸径计算出单株材积及单位面积蓄积。方差分析结果表明,除基本密度外,各指标差异均达到极显著水平(P<0.01)。均值分析结果表明,林木各生长指标与木质素含量的均值在株行距为6 m×3 m时达到最大,其余各木材指标均在株行距为4 m×3 m或6 m×4 m时达到最大;各测定指标表型变异系数变化范围为3.35%~29.87%;除基本密度外,各指标重复力均超过0.590。相关性分析结果表明,各生长指标间均达显著正相关水平(0.690<r<0.993),而木材性状间及生长性状与木材性状间的相关性较弱。分别以生长性状、木材性状及联合生长与木材性状为评价指标对各处理进行综合评价后发现,Qi 分别在株行距为6 m×3 m、4 m×6 m及4 m×6 m时达到最大。间伐能够促进林分生长,改良林木材性,且保留株行距为4 m×6 m时,林木材性及生长与木材综合改良效果较为优良;保留株行距为6 m×3 m时,林木生长效果最好。因此,今后可根据培育目标的不同选择适宜的间伐强度进行东北地区杨树优质工业资源材的培育。
中图分类号:
徐晶, 崔莹, 王福森, 李开隆, 曲冠证, 赵曦阳. 东北地区不同间伐强度青山杨人工林生长及木材性状变异[J]. 植物研究, 2024, 44(2): 248-258.
Jing XU, Ying CUI, Fusen WANG, Kailong LI, Guanzheng QU, Xiyang ZHAO. Growth and Wood Character Variation of Populus pseudo-cathyana×Populus deltoids Plantation with Different Thinning Intensity in Northeast China[J]. Bulletin of Botanical Research, 2024, 44(2): 248-258.
表1
不同间伐处理下林木各性状方差分析结果
性状 Traits | 变异来源 Source of variation | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
树高 Height | 密度Density | 336.917 | 3 | 112.306 | 290.669 | 0.000 |
区组Block | 102.711 | 2 | 51.356 | 132.919 | 0.000 | |
密度×区组Density×Block | 54.535 | 6 | 9.089 | 23.524 | 0.000 | |
胸径 Diameter at breast height | 密度Density | 3 354.126 | 3 | 1 118.042 | 419.566 | 0.000 |
区组Block | 27.529 | 2 | 13.765 | 5.165 | 0.006 | |
密度×区组Density×Block | 22.827 | 6 | 3.805 | 1.428 | 0.201 | |
2米径 Diameter at 2 m height | 密度Density | 3 389.750 | 3 | 1 129.917 | 436.694 | 0.000 |
区组Block | 15.186 | 2 | 7.593 | 2.934 | 0.054 | |
密度×区组Density×Block | 76.714 | 6 | 12.786 | 4.941 | 0.000 | |
东西冠幅 East-west crown width | 密度Density | 81.362 | 3 | 27.121 | 382.690 | 0.000 |
区组Block | 4.302 | 2 | 2.151 | 30.350 | 0.000 | |
密度×区组Density×Block | 3.254 | 6 | 0.542 | 7.652 | 0.000 | |
南北冠幅 North-south crown width | 密度Density | 78.708 | 3 | 26.236 | 326.153 | 0.000 |
区组Block | 0.975 | 2 | 0.488 | 6.061 | 0.002 | |
密度×区组Density×Block | 9.629 | 6 | 1.605 | 19.951 | 0.000 | |
平均冠幅 Mean crown width | 密度Density | 79.117 | 3 | 26.372 | 550.014 | 0.000 |
区组Block | 2.343 | 2 | 1.172 | 24.434 | 0.000 | |
密度×区组Density×Block | 5.005 | 6 | 0.834 | 17.396 | 0.000 | |
材积 Volume of timber | 密度Density | 1.296 | 3 | 0.432 | 470.992 | 0.000 |
区组Block | 0.011 | 2 | 0.005 | 5.961 | 0.003 | |
密度×区组Density×Block | 0.014 | 6 | 0.002 | 2.480 | 0.022 | |
木材基本密度 Wood basic density | 密度Density | 0.002 | 3 | 0.001 | 1.553 | 0.274 |
纤维长 Fiber length | 密度Density | 40 972.881 | 3 | 13 657.627 | 17.284 | 0.001 |
纤维宽 Fiber width | 密度Density | 199.768 | 3 | 66.589 | 67.977 | 0.000 |
半纤维素含量 Hemicellulose content | 密度Density | 2.715 | 3 | 0.905 | 24.325 | 0.000 |
纤维素含量 Cellulose content | 密度Density | 119.341 | 3 | 39.780 | 781.807 | 0.000 |
综纤维素含量 Holocellulose content | 密度Density | 105.767 | 3 | 35.256 | 324.434 | 0.000 |
木质素含量 Lignin content | 密度Density | 97.018 | 3 | 32.339 | 368.084 | 0.000 |
表2
不同间伐处理下林木各性状均值及多重比较分析
间伐处理 | 树高 Height/m | 胸径 Diameter at breast height/cm | 2米径 Diameter at 2 m height/cm | 东西冠幅 East-west crown width/m | 南北冠幅 North-south crown width/m |
---|---|---|---|---|---|
A | 17.43±0.72 c | 17.01±1.37 b | 16.73±1.35 b | 3.66±0.27 b | 3.80±0.38 c |
B | 18.98±0.98 a | 20.59±1.91 a | 20.43±1.93 a | 3.95±0.27 a | 4.03±0.23 a |
C | 18.33±0.58 b | 20.35±1.78 a | 20.25±1.90 a | 3.66±0.33 b | 3.94±0.30 b |
CK | 17.31±0.78 c | 15.55±1.45 c | 15.46±1.26 c | 3.03±0.27 c | 3.18±0.31 d |
间伐处理 | 平均冠幅 Mean crown width/m | 材积 Volume of timber/m3 | 单位面积蓄积 Storage per unit area/(m3·hm-2) | 木材基本密度 Wood basic density/(g·cm-3) | 纤维长 Fiber length/μm |
A | 3.73±0.27 c | 0.15±0.02 c | 119.63±18.04 b | 0.38±0.03 a | 942.95±1.05 b |
B | 3.99±0.18 a | 0.22±0.04 a | 117.42±21.22 b | 0.35±0.03 a | 1080.90±9.60 a |
C | 3.80±0.26 b | 0.21±0.03 b | 84.45±13.82 c | 0.36±0.02 a | 1087.40±50.47 a |
CK | 3.11±0.24 d | 0.12±0.02 d | 202.17±36.11 a | 0.35±0.01 a | 1057.90±22.80 a |
间伐处理 | 纤维宽 Fiber width/μm | 半纤维素含量 Hemicellulose content/% | 纤维素含量 Cellulose content/% | 综纤维素含量 Holocellulose content/% | 木质素含量 Lignin content/% |
A | 29.25±1.15 a | 16.14±0.31 a | 59.67±0.08 b | 75.81±0.29 b | 16.14±0.04 b |
B | 21.80±1.48 c | 15.88±0.13 ab | 53.78±0.05 c | 69.66±0.08 c | 22.10±0.05 a |
C | 25.87±0.32 b | 15.63±0.08 b | 61.63±0.33 a | 77.25±0.37 a | 15.60±0.40 b |
CK | 18.45±0.55 d | 14.87±0.17 c | 61.28±0.29 a | 76.15±0.46 b | 15.03±0.43 c |
表3
不同间伐处理下林木各性状表现及变异参数
变异参数 | 树高 Height/m | 胸径 Diameter at breast height/cm | 2米径 Diameter at 2 m height/cm | 东西冠幅 East-west crown width/m | 南北冠幅 North-south crown width/m | 平均冠幅 Mean crown width/m | 材积 Volume of timber/m3 |
---|---|---|---|---|---|---|---|
平均值Mean | 18.01 | 18.37 | 18.22 | 3.58 | 3.74 | 3.66 | 0.18 |
标准差SD | 1.03 | 2.71 | 2.72 | 0.44 | 0.45 | 0.41 | 0.05 |
变幅Range | 15.00~20.90 | 11.80~24.45 | 12.00~24.40 | 2.60~4.72 | 2.58~4.96 | 2.67~4.56 | 0.07~0.31 |
表型变异系数 CV,P/% | 5.74 | 14.76 | 14.92 | 12.30 | 12.07 | 11.19 | 29.87 |
重复力 Repeatability | 0.597 | 0.699 | 0.706 | 0.675 | 0.631 | 0.747 | 0.705 |
变异参数 | 木材基本密度 Wood basic density/(g·cm-3) | 纤维长 Fiber length/μm | 纤维宽 Fiber width/μm | 半纤维素 Hemicellulose content/% | 纤维素 Cellulose content/% | 综纤维素 Holocellulose content/% | 木质素 Lignin content/% |
平均值Mean | 0.36 | 1042.26 | 23.84 | 15.63 | 59.09 | 74.72 | 17.22 |
标准差SD | 0.02 | 65.57 | 4.34 | 0.52 | 3.30 | 3.11 | 2.98 |
变幅Range | 0.33~0.41 | 941.80~1128.60 | 17.90~30.40 | 14.73~16.83 | 53.73~61.96 | 69.58~77.66 | 14.60~22.14 |
表型变异系数 CV,P/% | 6.49 | 6.29 | 18.22 | 3.35 | 5.58 | 4.17 | 17.31 |
重复力 Repeatability | 0.356 | 0.942 | 0.985 | 0.959 | 0.999 | 0.997 | 0.998 |
表4
不同间伐处理下林木各性状相关性
性状 Traits | 树高 Height | 胸径 Diameter at breast height | 2米径 Diameter at 2 m height | 东西冠幅 East-west crown | 南北冠幅 North-south crown width | 平均冠幅 Mean crown width | 材积 Volume of timber | 木材基本密度 Wood basic density | 纤维长 Fiber length | 纤维宽 Fiber width | 半纤维素含量 Hemicellulose content | 纤维素含量 Cellulose content | 综纤维素含量 Holocellulose content |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
胸径 Diameter at breast height | 0.786** | ||||||||||||
2米径 Diameter at 2 m height | 0.782** | 0.991** | |||||||||||
东西冠幅 East-west crown | 0.753** | 0.778** | 0.795** | ||||||||||
南北冠幅 North-south crown width | 0.690* | 0.796** | 0.801** | 0.941** | |||||||||
平均冠幅 Mean crown width | 0.733** | 0.802** | 0.814** | 0.986** | 0.985** | ||||||||
材积 Volume of timber | 0.846** | 0.993** | 0.987** | 0.814** | 0.818** | 0.831** | |||||||
木材基本密度 Wood basic density | -0.169 | -0.091 | -0.048 | 0.139 | 0.078 | 0.113 | -0.119 | ||||||
纤维长 Fiber length | 0.389 | 0.521 | 0.454 | 0.008 | 0.080 | 0.045 | 0.502 | -0.606* | |||||
纤维宽 Fiber width | -0.097 | 0.158 | 0.201 | 0.458 | 0.548 | 0.511 | 0.127 | 0.514 | -0.591* | ||||
半纤维素含量 Hemicellulose content | 0.292 | 0.449 | 0.460 | 0.730** | 0.694* | 0.725** | 0.443 | 0.492 | -0.412 | 0.754** | |||
纤维素含量 Cellulose content | -0.615* | -0.498 | -0.492 | -0.667* | -0.509 | -0.598* | -0.561 | 0.050 | -0.146 | 0.139 | -0.424 | ||
综纤维素含量 Holocellulose content | -0.603* | -0.453 | -0.444 | -0.584* | -0.423 | -0.512 | -0.520 | 0.136 | -0.224 | 0.274 | -0.282 | 0.988** | |
木质素含量 Lignin content | 0.693* | 0.616* | 0.608* | 0.711** | 0.571 | 0.652* | 0.673* | -0.102 | 0.268 | -0.154 | 0.400 | -0.987** | -0.979** |
1 | 林魏巍,田呈明,熊典广,等.新疆杨树人工林中蜘蛛群落多样性及其影响因素[J].生物多样性,2023,31(3):91-104. |
LIN W W, TIAN C M, XIONG D G,et al.Influencing factors of spider community diversity in poplar plantations in Xinjiang,China[J].Biodiversity Science,2023,31(3):91-104. | |
2 | 王烟霞,樊军锋,程玮哲,等.基于叶片解剖结构的12个杨树无性系抗旱性分析[J].西北农林科技大学学报(自然科学版),2021,49(11):147-154. |
WANG Y X, FAN J F, CHENG W Z,et al.Drought resistances analysis of 12 poplar clones based on leaf anatomical structure[J].Journal of Northwest A&F University(Natural Science Edition),2021,49(11):147-154. | |
3 | 李鑫,廖诗贤,王宇婷,等.过表达ERF76小黑杨的木材组分分析及影响[J].山东林业科技,2023,53(4):1-6. |
LI X, LIAO S X, WANG Y T,et al.Wood composition analysis and effects of overexpressing ERF76 on small black poplar[J].Journal of Shandong Forestry Science and Technology,2023,53(4):1-6. | |
4 | 马利娜,尹鹏飞,韩月明,等.杨树农田防护林枯落物对5种植物种子萌发的影响[J].防护林科技,2023(2):56-58. |
MA L N, YIN P F, HAN Y M,et al.Effects of litter of Populus farmland shelterbelts on seed germination of five kinds of plants[J].Protection Forest Science and Technology,2023(2):56-58. | |
5 | 胡凌,商侃侃,张庆费,等.密度调控对香樟人工林林木生长及空间分布的影响[J].西北林学院学报,2014,29(2):20-25. |
HU L, SHANG K K, ZHANG Q F,et al.Effects of density regulation on the growth and spatial distribution of cinnamomum camphora plantations in Shanghai[J].Journal of Northwest Forestry University,2014,29(2):20-25. | |
6 | 吴加彪.闽楠间伐材的构造与材性研究[D].长沙:中南林业科技大学,2023. |
WU J B.Study on structure and wood properties of phoebe bournei thinning wood[D].Changsha:Central South University of Forestry & Technology,2023. | |
7 | 宋重升,王有良,张利荣,等.间伐强度对杉木人工林材种结构的影响[J].福建农林大学学报(自然科学版),2022,51(2):195-203. |
SONG C S, WANG Y L, ZHANG L R,et al.Effect of thinning intensity on timber structure of Chinese fir plantation[J].Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2022,51(2):195-203. | |
8 | 李华福,谭文玮,刘斌,等.不同抚育间伐强度对杉木林生长的影响[J].安徽农业科学,2022,50(5):105-108. |
LI H F, TAN W W, LIU B,et al.Effects of different tending and thinning intensities on the growth of Cunninghamia lanceolata forests[J].Journal of Anhui Agricultural Sciences,2022,50(5):105-108. | |
9 | 付小兵,任亚丽.间伐强度对油松人工林生长的影响[J].现代园艺,2023,46(2):33-34. |
FU X B, REN Y L.Effects of thinning intensity on the growth of Pinus tabulaeformis plantation[J].Modern Horticulture,2023,46(2):33-34. | |
10 | 王毓靖,颜忠鹏,李志辉.不同间伐强度对桉树人工林林分生长的影响[J].桉树科技,2019,36(3):36-41. |
WANG Y J, YAN Z P, LI Z H.Effects of different thinning intensities on stand growth of Eucalyptus plantation [J].Eucalypt Science & Technology,2019,36(3):36-41. | |
11 | 赵曦阳.白杨杂交试验与杂种无性系多性状综合评价[D].北京:北京林业大学,2010. |
ZHAO X Y.Study on hybridization and evaluation of multiple characters of hybrid clones in Chinese white poplar[D].Beijing:Beijing Forestry University,2010. | |
12 | 任忠秀,聂立水,张志毅,等.水氮耦合效应对毛白杨无性系人工林林分蓄积量与经济效益的影响[J].北京林业大学学报,2012,34(1):25-31. |
REN Z X, NIE L S, ZHANG Z Y,et al.Effect of water and nitrogen on the stand volume and economic benefit of Populus tomentosa clone plantations[J].Journal of Beijing Forestry University,2012,34(1):25-31. | |
13 | 国家市场监督管理总局,国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法 第5部分:密度测定: [S].北京:中国标准出版社,2021. |
State Administration for Market Regulation,AdministrationStandardization. Test methods for physical and mechanical properties of small clear wood specimens:Part 5:determination of density: [S].Beijing:Standards Press of China,2021. | |
14 | 穆怀志,刘桂丰,姜静,等.白桦半同胞子代生长及木材纤维性状变异分析[J].东北林业大学学报,2009,37(3):1-3. |
MU H Z, LIU G F, JIANG J,et al.Variations of growth and fiber properties of half-sib family progeny of Betula platyphylla [J].Journal of Northeast Forestry University,2009,37(3):1-3. | |
15 | YIN S P, XIAO Z H, ZHAO G H,et al.Variation analyses of growth and wood properties of Larix olgensis clones in China[J].Journal of Forestry Research,2017,28(4):687-697. |
16 | LIANG D Y, DING C J, ZHAO G H,et al.Variation and selection analysis of Pinus koraiensis clones in northeast China[J].Journal of Forestry Research,2018,29(3):611-622. |
17 | LIU M R, YIN S P, SI D J,et al.Variation and genetic stability analyses of transgenic TaLEA poplar clones from four different sites in China[J].Euphytica,2015,206(2):331-342. |
18 | 徐玉金,王喜和,李平扬,等.膨大剂处理对樟子松种实性状的影响[J].植物研究,2022,42(5):762-771. |
XU Y J, WANG X H, LI P Y,et al.Effect of fruit-expander on cone performance of Pinus sylvestris var. mongolica [J].Bulletin of Botanical Research,2019,42(5):762-771. | |
19 | 续九如.林木数量遗传学[M].北京:高等教育出版社,2006. |
XU J R.Quantitative senetics in forestry[M].Beijing:Higher Education Press,2006. | |
20 | 李岩,朱嘉瑶,王喜和,等.红松优树无性系及其子代的生长评价与选择研究[J].北京林业大学学报,2021,43(10):38-46. |
LI Y, ZHU J Y, WANG X H,et al.Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis [J].Journal of Beijing Forestry University,2021,43(10):38-46. | |
21 | 张丹丹,李翔,王璧莹,等.长白落叶松种子园亲本无性系生长性状变异研究[J].植物研究,2022,42(1):130-137. |
ZHANG D D, LI X, WANG B Y,et al.Variation analysis of growth traits of Larix olgensis parental clones in seed orchards[J].Bulletin of Botanical Research,2022,42(1):130-137. | |
22 | 国敏.杨树间伐修枝技术对林分生长的影响[J].现代农业科技,2012(14):135-136. |
GUO M.Effects of thinning and pruning techniques on stand growth of poplar[J].Modern Agricultural Science & Technology,2012(14):135-136. | |
23 | 王建国,王德志.大青杨人工林间伐实验[J].林业勘查设计,2008(3):55-56. |
WANG J G, WANG D Z.Experiment on thinning of plantation of cathay poplar[J].Forestry Prospect and Design,2008(3):55-56. | |
24 | 郭明辉.抚育间伐对人工林红松木材材质的影响[J].东北林业大学学报,2002,30(1):1-5. |
GUO M H.Effect of thinning upon the wood qualities of Pinus koraiensis plantation[J].Journal of Northeast Forestry University,2002,30(1):1-5. | |
25 | 刘盛全,鲍甫成.生长培育措施对人工林木材性质的影响[J].世界林业研究,1999,12(6):24-27. |
LIU S Q, BAO F C.Effects of growth and cultivation measures on wood properties of plantation[J].World Forestry Research,1999,12(6):24-27. | |
26 | 龚固堂,牛牧,慕长龙,等.间伐强度对柏木人工林生长及林下植物的影响[J].林业科学,2015(4):8-15. |
GONG G T, NIU M, MU C L,et al.Impacts of different thinning intensities on growth of Cupressus funebris Plantation and Understory Plants[J].Scientia Silvae Sinicae,2015(4):8-15. | |
27 | 刘晓婷,魏嘉彤,吴培莉,等.吉林省天然红松居群表型变异分析及多样性研究[J].北京林业大学学报,2021,43(4):25-34. |
LIU X T, WEI J T, WU P L,et al.Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J].Journal of Beijing Forestry University,2021,43(4):25-34. | |
28 | 蒋路平,王景源,张鹏,等.170个红松无性系生长及结实性状变异及选择[J].林业科学研究,2019,32(1):58-64. |
JIANG L P, WANG J Y, ZHANG P,et al.Variation and selection of growth and fruiting traits in 170 clones of Pinus koraiensis [J].Forest Research,2019,32(1):58-64. | |
29 | 庞发虎,杨建伟,庞振凌,等,杨树生理生态指标与环境因子之间相关性分析 [J].生态学报,2010,30(12):3188-3197. |
PANG F H, YANG J W, PANG Z L,et al.The correlation analysis between Populus simonii ecophysiological indexes and environmental factors[J].Acta Ecologica Sinica,2010,30(12):3188-3197. | |
30 | 侯坤龙,周德滨,李海珠,等.营造白桦人工林最佳初植密度研究[J].林业勘查设计,2006(2):65. |
HOU K L, ZHOU D B, LI H Z,et al.Studies on the optimum plantation density of artificial birch forest[J].Forestry Prospect and Design,2006(2):65. | |
31 | 董鹏,关庆伟,李朝,等.间伐对侧柏人工林林木生长的影响[J].浙江林业科技,2010,30(1):65-69. |
DONG P, GUAN Q W, LI C,et al.Effect of different intermediate cutting intensity on growth of Platycladus orientalis plantations[J].Journal of Zhejiang Forestry Science & Technology,2010,30(1):65-69. | |
32 | 严艳兵,潘惠新.美洲黑杨无性系木材材性与生长性状遗传相关分析[J].中南林业科技大学学报,2021,41(5):74-81. |
YAN Y B, PAN H X.Genetic correlation analysis of wood property and growth traits in Populus deltoides clones[J].Journal of Central South University of Forestry and Technology,2021,41(5):74-81. | |
33 | CHAVES J E, LENCINAS M V, CELLINI J M,et al.Changes in nutrient and fibre tissue contents in Nothofagus pumilio trees growing at site quality and crown class gradients[J].Forest Ecology and Management,2022,505:119910. |
34 | 杨振寅,李昆,廖声熙,等.不同类型构树皮的纤维形态、化学组成与制浆性能研究[J].南京林业大学学报(自然科学版),2007,31(6):65-68. |
YANG Z Y, LI K, LIAO S X,et al.Influence of types on chemical composition,fiber morphology and pulping properties of broussonetia papyrifera bark[J].Journal of Nanjing Forestry University (Natural Science Edition),2007,31(6):65-68. | |
35 | 周小成,黄婷婷,李媛,等.结合遥感林龄因子的亚热带森林蓄积量估算方法[J].林业科学,2023,59(4):88-99. |
ZHOU X C, HUANG T T, LI Y,et al.A method for estimating subtropical forest stock by combining remotely sensed forest age factors[J].Scientia Silvae Sinicae,2023,59(4):88-99. |
[1] | 周雪燕, 王璧莹, 郝雪峰, 胡兴国, 吴江涛, 郎凯, 胡钦波, 赵曦阳. 长白落叶松半同胞家系生长和木材性状遗传变异与联合选择[J]. 植物研究, 2022, 42(3): 383-393. |
[2] | 马庆, 李芳蕊, 刘桂丰, 李慧玉. 航天诱变白桦生长性状分析[J]. 植物研究, 2021, 41(4): 540-546. |
[3] | 刘炳妤, 黄桂华, 梁坤南, 王西洋, 陈天宇, 周再知, 杨光. 柚木无性系光合生理特征与生长综合评价[J]. 植物研究, 2020, 40(2): 209-216. |
[4] | 李嘉琪, 韩喜东, 马盈慧, 李月季, 王立祥, 韩喜田, 刘志, 李海民, 赵曦阳. 樟子松无性系生长性状与结实量变异研究[J]. 植物研究, 2020, 40(2): 217-223. |
[5] | 蔡年辉, 王大玮, 黄文学, 吴俊文, 王军民, 陈诗, 许玉兰, 段安安. 云南松苗木生长与生物量的相关性及通径分析[J]. 植物研究, 2019, 39(6): 853-862. |
[6] | 张秦徽, 王洪武, 姜国云, 沈光, 王连奎, 李焱龙, 王雷, 王立祥, 李月季, 李蕊, 赵曦阳. 红松半同胞家系变异分析及选择研究[J]. 植物研究, 2019, 39(4): 557-567. |
[7] | 栾柯权, 张恒, 田永刚, 杨书成, 王洪武, 王连奎, 李焱龙, 陆志民, 赵曦阳. 不同树龄水曲柳半同胞家系生长性状变异研究[J]. 植物研究, 2019, 39(2): 239-245. |
[8] | 殷东生, 魏晓慧. 氮肥对风箱果幼苗形态和生理特性的影响[J]. 植物研究, 2018, 38(6): 828-833. |
[9] | 隋立龙, 王芳, 赵泉湖, 王太坤, 姜鑫, 王君, 陆志民, 杨雨春. 不同林分红松生长与结实性状比较研究[J]. 植物研究, 2018, 38(6): 886-893. |
[10] | 姜国云, 蒋路平, 宋双林, 王井源, 王淇, 王连福, 张鹏, 赵曦阳. 红松半同胞家系遗传变异分析及果材兼用优良家系选择[J]. 植物研究, 2018, 38(5): 775-784. |
[11] | 张鑫鑫, 夏辉, 赵昕, 张莹, 李光岩, 张磊, 孙晓阳, 韩冬荟, 赵曦阳. 长白落叶松种子园亲本生长与结实性状综合评价[J]. 植物研究, 2017, 37(6): 933-940. |
[12] | 黄海娇, 彭儒胜, 刘宇, 姜静. 3年生不同倍性白桦家系生长性状变异分析及优良家系的选择[J]. 植物研究, 2017, 37(2): 274-280. |
[13] | 覃敏, 尹光天, 杨锦昌, 李荣生, 邹文涛. 米老排种源家系生长性状变异分析及早期选择[J]. 植物研究, 2017, 37(1): 139-146. |
[14] | 梁晶;王庆成*;许丽娟;吴文娟. 抚育对长白山两种林分凋落物分解及土壤的影响[J]. 植物研究, 2015, 35(2): 297-303. |
[15] | 梁晶1,2;王庆成1*;许丽娟1;吴文娟1. 抚育对长白山西坡杨桦幼龄林土壤呼吸及碳储量密度的影响[J]. 植物研究, 2015, 35(1): 110-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||