植物研究 ›› 2023, Vol. 43 ›› Issue (5): 679-689.doi: 10.7525/j.issn.1673-5102.2023.05.005
收稿日期:
2023-07-18
出版日期:
2023-09-20
发布日期:
2023-09-05
通讯作者:
隋德宗
E-mail:535122107@qq.com
作者简介:
隋德宗(1978—),男,研究员,主要从事耐盐林木良种选育和沿海防护林营建技术研究。
基金资助:
Received:
2023-07-18
Online:
2023-09-20
Published:
2023-09-05
Contact:
Dezong SUI
E-mail:535122107@qq.com
About author:
SUI Dezong(1978—),male,research fellow,mainly engaged in salt-tolerant tree breeding and coastal shelterbelt construction technology research.
Supported by:
摘要:
为探讨乌桕(Triadica sebifera)蛋白水平响应盐胁迫的分子机制,研究选取盐敏感型无性系(SS18)和盐耐受型无性系(ST21),采用0.4%NaCl浇灌模拟盐胁迫,利用同位素标记相对和绝对定量(iTRAQ)技术对胁迫不同时期(0、24、72 h)叶片蛋白进行定量。在SS18和ST21中分别鉴定出显著差异蛋白279、106种。盐胁迫条件下2个无性系中共同存在4种(过氧化氢酶、延伸因子-1α、含H+-ATPase_c结构域的蛋白和硫氧还蛋白)显著上调表达蛋白,推测其可能是乌桕耐盐响应的重要潜在靶标蛋白。通路富集分析发现乌桕叶片响应盐胁迫的差异蛋白主要与光合作用、糖类代谢、氨基酸代谢、脂肪酸代谢途径有关。蛋白-蛋白互作网络发现SS18中分别存在5个(24 h)和3个(72 h)参与糖分解及能量代谢的核心蛋白;而ST21中存在5个(24 h)和4个(72 h)参与碳 代谢、光合固碳、光合作用代谢及与叶绿素a-b结合相关的核心蛋白。ST21叶片通过提高糖类、氨基酸及脂肪酸代谢途径,并积累大量可溶性糖、氨基酸和有机酸等小分子可溶性物质,这可能是其参与盐胁迫响应的重要方面。
中图分类号:
隋德宗, 王保松. 盐胁迫下乌桕无性系叶片的比较蛋白组学研究[J]. 植物研究, 2023, 43(5): 679-689.
Dezong SUI, Baosong WANG. Comparative Proteomics on Leaves of Triadica sebifera Clones under Salt Stress[J]. Bulletin of Botanical Research, 2023, 43(5): 679-689.
图3
乌桕叶片对盐耐受响应的差异蛋白互作网络圆形结点表示差异蛋白,结点大小表示蛋白表达的相对丰度,绿色越深表示差异蛋白变化倍数越低,红色越深表示差异蛋白变化倍数越高;方形结点表示代谢通路,蓝色越深表示-log(P)越大,黄色越深表示-log(P)越小。圆形结点之间的连线表示显著相关性,红线表示显著正相关,即激活作用;绿线表示显著负相关,即抑制作用;黑线表示显著相关;A.与SS18未处理(0 h)相比,盐胁迫处理24 h后SS18叶片差异蛋白的互作分析;B.与SS18未处理(0 h)相比,盐胁迫处理72 h后SS18叶片差异蛋白的互作分析; C.与ST21未处理(0 h)相比,盐胁迫处理24 h后ST21叶片差异蛋白的互作分析;D.与ST21未处理(0 h)相比,盐胁迫处理72 h后ST21叶片差异蛋白的互作分析
1 | 刘微,李佳薇,徐若瑄,等.NaCl胁迫对辣椒种子萌发及幼苗生长的影响[J/OL].分子植物育种[2021-10-29].. |
LIU W, LI J W, XU R X,et al.Effect of NaCl stress on seed germination and seedling growth of pepper[J/OL].Molecular Plant Breeding[2021-10-29].. | |
2 | 缪李飞,于晓晶,张秋悦,等.4个杜梨半同胞家系苗期耐盐性分析[J].南京林业大学学报(自然科学版),2020,44(5):157-166. |
MIAO L F, YU X J, ZHANG Q Y,et al.Salt tolerance of four half-sib families of Pyrus betulaefolia Bunge from coastal areas[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2020,44(5):157-166. | |
3 | 崔士友,张蛟,翟彩娇,等.江苏沿海滩涂快速改良与高效利用研究进展[J].农学学报,2017,7(3):42-46. |
CUI S Y, ZHANG J, ZHAI C J.Fast amelioration and efficient utilization of coastal beach in Jiangsu province[J].Journal of Agriculture,2017,7(3):42-46. | |
4 | 刘鹏,龚伟,陈鑫,等.乌桕经霜满树红:乌桕园林观赏价值及应用[J].现代园艺,2020,43(14):90-92. |
LIU P, GONG W, CHEN X,et al.The ornamental value and application of Triadica sebifera [J].Modern Horticulture,2020,43(14):90-92. | |
5 | 李冬林,黄栋,王瑾,等.乌桕研究综述[J].江苏林业科技,2009,36(4):43-47. |
LI D L, HUANG D, WANG J,et al.The review of research on Triadica sebifera [J].Journal of Jiangsu Forestry Science and Technology,2009,36(4):43-47. | |
6 | 张广涛,包厚天,黄卫和,等.不同氮素施肥处理对乌桕容器苗和根系生长的影响[J].江苏农业科学,2022,50(9):135-142. |
ZHANG G T, BAO H T, HUANG W H,et al.Effects of different nitrogen application treatments on growth and root architecture of Sapium sebiferum container seedlings[J].Jiangsu Agricultural Science,2022,50(9):135-142. | |
7 | 陈百强,曹受金,沈鑫,等.观赏乌桕品种表型多样性分析及综合评价[J].分子植物育种,2022,20(12):4108-4120. |
CHEN B Q, CAO S J, SHEN X,et al.Phenotypic diversity analysis and comprehensive evaluation of ornamental Triadica sebiferum varieties[J].Molecular Plant Breeding,2022,20(12):4108-4120. | |
8 | 李立君,赵婷婷,钱存梦,等.内源抑制物对乌桕种子萌发的影响[J].东北林业大学学报,2022,50(12):9-14. |
LI L J, ZHAO T T, QIAN C M,et al.Effect of endogenous inhibitors on seed germination of Sapium sebiferum [J].Journal of Northeast Forestry University,2022,50(12):9-14. | |
9 | 李因刚,沈凤强,徐永勤,等.观赏乌桕新品种‘红紫佳人’[J].园艺学报,2020,47(S2):3137-3138. |
LI Y G, SHEN F Q, XU Y Q,et al.A new ornamental Triadica sebifera cultivar‘Hongzi Jiaren’[J].Acta Horticulturae Sinica,2020,47(S2):3137-3138. | |
10 | 许中秋,隋德宗,谢寅峰,等.两个乌桕新品种苗木光合特性比较[J].南京林业大学学报(自然科学版),2021,45(1):93-100. |
XU Z Q, SUI D Z, XIE Y F,et al.Comparison of photosynthetic characteristics of two new Triadica sebifera varieties[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2021,45(1):93-100. | |
11 | 倪正.观叶乌桕优株选择及其叶片呈色生理生化分析[D].合肥:安徽农业大学,2022. |
NI Z.Physiological and biochemical analysis of superior selection and leaves discoloration of ornamental leaves Sapium sebiferum [D].Hefei:Anhui Agricultural University,2022. | |
12 | 吴飞洋,柳新红,王成龙,等.土壤水分对乌桕秋叶生理指标及观赏效果的影响[J].东北林业大学学报,2021,49(5):19-23,44. |
WU F Y, LIU X H, WANG C L,et al.Effects of soil water content on physiological indexes and ornamental effects of Triadica sebifera leaves in autumn[J].Journal of Northeast Forestry University,2021,49(5):19-23,44. | |
13 | 王乔健.独脚金内酯调控乌桕抗旱耐盐的分子机理研究[D].合肥:安徽农业大学,2019. |
WANG Q J.Molecular mechanism of strigolactons in the regulation of drought and salt resistance in the S .sebiferum[D].Hefei:Anhui Agricultural University,2019. | |
14 | 隋德宗,许中秋,王俊毅.4个乌桕新品种对NaCl胁迫的生理响应及耐盐性评价[J].安徽农业大学学报,2021,48(6):889-894. |
SUI D Z, XU Z Q, WANG J Y.Physiological response and salt tolerance evaluation of four new Triadica sebifera varieties to salt stress[J].Journal of Anhui Agricultural University,2021,48(6):889-894. | |
15 | 董峰平,李海波,柳新红,等.基于转录组序列的乌桕SSR分子标记开发[J].分子植物育种,2020,18(19):6449-6455. |
DONG F P, LI H B, LIU X H,et al.Development of SSR markers based on transcriptome sequences of Triadica sebifera [J].Molecular Plant Breeding,2020,18(19):6449-6455. | |
16 | 王东东.SsGA2o×1和Ssga20o×1调控乌桕木质部发育的功能研究[D].合肥:安徽农业大学,2019. |
WANG D D.Functional study of SsGA2o×1 and Ssga20o×1 on the regulation of tallow xylem development[D].Hefei:Anhui Agricultural University,2019. | |
17 | 吴影.乌桕花芽转录组测序分析及花发育调控机制研究[D].合肥:中国科学技术大学,2015. |
WU Y.Floral bud transcriptome analysis and research on floral development regulation mechanism of Sapium sebiferum [D].Hefei:University of Science and Technology of China,2015. | |
18 | LUO J, REN W Y, CAI G H. et al.The chromosome-scale genome sequence of Triadica sebifera provides insight into fatty acids and anthocyanin biosynthesis[J].Communications Biology,2022,5(1):786. |
19 | YE Z C, YU J, YAN W P,et al.Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera [J].Horticulture Research,2021,8(1):157. |
20 | FENG Z M, GAO P, ZHAO J H,et al.iTRAQ-based quantitative proteomics analysis of defense responses triggered by the pathogen Rhizoctonia solani infection in rice[J].Journal of Integrative Agriculture,2022,21(1):139-152. |
21 | ZHANG Y X, CHEN Y, GUO Y Y,et al.iTRAQ-based proteomic analysis reveals that energy waste caused by transmembrane transport disruption accelerated the ripening and senescence of postharvest broccoli heads under high O2 stress[J].Scientia Horticulturae,2022,301:111125. |
22 | LI J J, NADEEM M, CHEN L Y,et al.Differential proteomic analysis of soybean anthers by iTRAQ under high-temperature stress[J].Journal of Proteomics,2020,229:103968. |
23 | TENG R M, WU Z J, MA H Y,et al.Differentially expressed protein are involved in dynamic changes of catechins contents in postharvest tea leaves under different temperatures[J].Journal of Agricultural and Food Chemistry,2019,67(26):7547-7560. |
24 | 姜志磊,金峰学,李毅丹.基于iTRAQ技术的干旱胁迫下玉米苗期蛋白质组学研究[J].玉米科学,2020,28(1):51-58. |
JIANG Z L, JIN X F, LI Y D.iTRAQ-based quantitative proteomic analysis of maize seedlings in response to drought stress[J].Journal of Maize Sciences,2020,28(1):51-58. | |
25 | WU Z J, MA H Y, ZHUANG J.iTRAQ-based proteomics monitors the withering dynamics in postharvest leaves of tea plant (Camellia sinensis)[J].Molecular Genetics and Genomics,2018,293(1):45-59. |
26 | 齐琪,马书荣,徐维东.盐胁迫对植物生长的影响及耐盐生理机制研究进展[J].分子植物育种,2020,18(8):2741-2746. |
QI Q, MA S R, XU W D.Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J].Molecular Plant Breeding,2020,18(8):2741-2746. | |
27 | 李正丽,张丽,文林宏,等.盐胁迫对两个基因型辣椒生理特性的影响[J].分子植物育种,2022,20(5):1658-1663. |
LI Z L, ZAHNG L, WEN L H,et al.Effects of salt stress on the physiological characteristics of two pepper genotypes[J].Molecular Plant Breeding,2022,20(5):1658-1663. | |
28 | 尚晓蕊,红格日其其格,雷艳红,等.盐胁迫下拟南芥角果蛋白质组学分析[J/OL].分子植物育种[2023-02-02].. |
SHANG X R, HONG GERI Q, LEI H Y,et al.Proteomic analysis of Arabidopsis silique under salt stress[J/OL].Molecular Plant Breeding[2023-02-02].. | |
29 | 王强,刘会芳,韩宏伟,等.基于TMT和PRM技术筛选番茄响应盐胁迫差异表达蛋白[J].新疆农业科学,2022,59(6):1418-1428. |
WANG Q, LIU H F, HAN H W,et al.Screening differentially expressed proteins in response to salt stress of tomato leaves based on TMT and PRM techniques[J].Xinjiang Agricultural Sciences,2022,59(6):1418-1428. | |
30 | 梁敏,许兴,丁向真,等.盐胁迫下宁夏枸杞Na+吸收及Na+/H+转运蛋白与H+-ATPase基因表达的研究[J].核农学报,2020,34(4):745-751. |
LIANG M, XU X, DING X Z,et al.Effects of salt stress on Na+ uptake and expression of Na+ /H+ transporter and H+-ATPase genes in Lycium barbarum L.[J].Journal of Nuclear Agricultural Sciences,2020,34(4):745-751. | |
31 | 孔伟伟.花生质膜H+-ATPase基因AhHA1在盐胁迫响应中的功能研究[D].济南:山东师范大学,2020. |
KONG W W.Role of peanut plasma membrane H+-ATPase gene AhHA1 in salt stress response[D].Jinan:Shandong Normal University,2020. | |
32 | 田林.比拉底白刺响应盐胁迫的生理生化与分子机制研究[D].北京:北京林业大学,2019. |
TIAN L.Physiological and molecular mechanisms of Nitraria billardieri in response to salt stress[D].Beijing:Beijing Forestry University,2019. | |
33 | 麻莹,王晓苹,姜海波,等.盐碱胁迫下碱地肤体内的有机酸积累及其草酸代谢特点[J].草业学报,2017,26(7):158-165. |
MA Y, WANG X P, JIANG H B,et al.Characteristics of organic acids accumulation and oxalate metabolism in Kochia sieversiana under salt and alkali stresses[J].Acta Prataculturae Sinica,2017,26(7):158-165. | |
34 | 王哲,柴里昂,樊怀福,等.植物响应盐胁迫蛋白质组学研究进展[J].浙江农业学报,2019,31(6):1021-1028. |
WANG Z, CHAI L A, FAN H F,et al.Progress in proteomics analysis of plant response to salt stress[J].Acta Agriculturae Zhejiangensis,2019,31(6):1021-1028. | |
35 | LUO M J, ZHAO Y X, WANG Y D,et al.Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms[J].Journal of Proteome Research,2018,17(1):141-153. |
36 | PRINSI B, FAILLA O, SCIENZA A,et al.Root proteomic analysis of two grapevine rootstock genotypes showing different susceptibility to salt stress[J].International Journal of Molecular Sciences,2020,21(3):1-22. |
37 | 王强,王娟,张慧君,等.番茄幼苗盐胁迫响应蛋白质组分析[J].西北植物学报,2016,36(11):2226-2232. |
WANG Q, WANG J, ZHANG H J,et al.Proteome analysis of tomato seedlings in response to salt stress[J].Acta Botanica Boreali-Occidentalia Sinica,2016,36(11):2226-2232. | |
38 | 张恒,刘晓婷,陈嵩,等.盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析[J].南京林业大学学报(自然科学版),2020,44(2):59-66. |
ZHANG H, LIU X T, CHEN S,et al.Analysis of differentially expressed proteins in leaves of triploid Populus simonii × P.nigra hybrid clones under salt stress[J].Journal of Nanjing Forestry University (Natural Science Edition),2020,44(2):59-66. | |
39 | KAV N N V, SRIVASTAVA S, GOONEWARDENE L,et al.Proteome-level changes in the roots of Pisum sativum in response to salinity[J].Annals of Applied Biology,2004,145(2):217-230. |
40 | 赵海燕,魏宁,孙聪聪,等.NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J].北京林业大学学报,2018,40(11):28-41. |
ZHAO H Y, WEI N, SUN C C,et al.Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J].Journal of Beijing Forestry University,2018,40(11):28-41. | |
41 | 张若溪,蔡亚南,李庆卫.混合盐胁迫对栾树光合生理指标的影响[J].西北植物学报,2022,42(1):98-106. |
ZHANG R X, CAI Y N, LI Q W.Effect of mixed salt stress on photosynthetic physiological indexes of Koelreuteria paniculata [J].Acta Botanica Boreali-Occidentalia Sinica,2022,42(1):98-106. | |
42 | 张潭,唐达,李思思,等.盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J].西北植物学报,2017,37(12):2474-2482. |
ZHANG T, TANG D, LI S S,et al.Responses of growth and photosynthesis of Lycium barbarum L.seedling to salt-stress and alkali-stress[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(12):2474-2482. | |
43 | 赵娟娟,孟瑛,朱海峰,等.NaCl胁迫对酸枣(Ziziphus acidojujuba)幼苗光合作用和荧光特性的影响[J].石河子大学学报(自然科学版),2017,35(3):319-325. |
ZHAO J J, MENG Y, ZHU H F,et al.Effect of NaCl stress on the photosynthetic and chlorophyll fluorescence characteristics of sour jujube (Ziziphus acidojujuba) seedlings[J].Journal of Shihezi University (Natural Science),2017,35(3):319-325. | |
44 | 李俊良.基于多组学技术探究甜菜盐胁迫应答的分子机制[D].哈尔滨:哈尔滨工业大学,2021. |
LI J L.Research on exploring the molecular mechanism of salt stress response in sugar beet based on multi-omics technology[D].Harbin:Harbin Institute of Technology,2021. |
[1] | 庄舒尧, 许恒博, 胡骁彧, 戴上, 张彦妮. 盐碱胁迫对彩叶矾根‘银扇’幼苗生长和生理特性的影响[J]. 植物研究, 2023, 43(4): 520-530. |
[2] | 徐磊, 胥晓, 刘沁松. 外源水杨酸对盐胁迫下珙桐幼苗抗氧化系统和基因表达的影响[J]. 植物研究, 2023, 43(4): 572-581. |
[3] | 李婷婷, 杨柳, 李晓霞, 王奕淞, 王秀伟. 水曲柳和蒙古栎光合特性和生长对不同氮素形态的响应[J]. 植物研究, 2023, 43(2): 207-217. |
[4] | 廖诗贤, 王宇婷, 董立本, 顾咏梅, 贾丰璘, 姜廷波, 周博如. 小黑杨转录因子PsnbZIP1应答盐胁迫功能分析[J]. 植物研究, 2023, 43(2): 288-299. |
[5] | 刘森尧, 贾丰璘, 国庆, 樊高锋, 周博如, 姜廷波. 小黑杨转录因子PsnbHLH162基因在盐和低温胁迫下应答分析[J]. 植物研究, 2023, 43(2): 300-310. |
[6] | 岳莉然, 刘颖婕, 刘晨旭, 周蕴薇. 响应盐胁迫调控的露地菊miR398a的克隆及功能研究[J]. 植物研究, 2022, 42(6): 986-996. |
[7] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StNPR4基因的克隆与功能分析[J]. 植物研究, 2022, 42(5): 821-829. |
[8] | 陈娇娆, 续旭, 胡章立, 杨爽. 植物感受盐胁迫及相关钙信号的研究进展[J]. 植物研究, 2022, 42(4): 713-720. |
[9] | 程赫, 田双慧, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨nsLTP基因家族全基因组水平鉴定及其表达特性分析[J]. 植物研究, 2022, 42(3): 412-423. |
[10] | 何凤, 杜红岩, 刘攀峰, 王璐, 庆军, 杜兰英. 干旱胁迫对杜仲叶片结构特征的影响[J]. 植物研究, 2021, 41(6): 947-956. |
[11] | 袁秀云, 许申平, 周一冉, 王喜蒙, 崔波. 遮荫对白及形态及叶片结构的影响[J]. 植物研究, 2021, 41(6): 974-981. |
[12] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
[13] | 赵晓菊, 张奕婷, 刘佳, 刘洋, 唐中华. 一氧化氮参与盐胁迫下长春花酚类代谢的调控研究[J]. 植物研究, 2021, 41(4): 633-640. |
[14] | 任梦轩, 张洋, 王爽, 王瑞琪, 刘聪, 魏志刚. 毛果杨GATA基因家族全基因组水平鉴定及表达分析[J]. 植物研究, 2021, 41(1): 107-118. |
[15] | 张书齐, 许全, 姚海荣, 杨秋, 刘文杰, 王萌. 海南岛海岸带木麻黄和厚藤叶片碳、氮、磷含量及其化学计量特征[J]. 植物研究, 2020, 40(2): 224-232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||