植物研究 ›› 2023, Vol. 43 ›› Issue (1): 131-139.doi: 10.7525/j.issn.1673-5102.2023.01.014
宋海云1, 张涛1, 贺鹏1, 郑树芳1, 王立丰2, 王文林1()
收稿日期:
2021-11-09
出版日期:
2023-01-20
发布日期:
2022-12-23
通讯作者:
王文林
E-mail:wwlin3949@163.com
作者简介:
宋海云(1986—),女,农艺师,主要从事热带亚热带果树种质资源评价与利用。
基金资助:
Haiyun SONG1, Tao ZHANG1, Peng HE1, Shufang ZHENG1, Lifeng WANG2, Wenlin WANG1()
Received:
2021-11-09
Online:
2023-01-20
Published:
2022-12-23
Contact:
Wenlin WANG
E-mail:wwlin3949@163.com
About author:
SONG Haiyun(1986—),female,agronomist,mainly engaged in the evaluation and utilization of tropical and subtropical fruit germplasm resources.
Supported by:
摘要:
为研究澳洲坚果(Macadamia integrifolia)中bZIP转录因子家族成员在逆境抗性中潜在功能,从‘桂热1号’品种果实中克隆MibZIP1基因。结合转录因子结构分析和不同处理下表达规律进行分析发现MibZIP1基因序列长度1 157 bp,基因编码区长度927 bp,编码308个氨基酸。MibZIP1存在典型bZIP superfamily结构域。系统进化分析鉴定出澳洲坚果MibZIP1、蒂罗花(Telopea speciosissima)TsbZIP60和荷花(Nelumbo nucifera)NnbZIP60亲缘关系较近。组织表达分析结果表明MibZIP1在‘桂热1号’品种叶片中的表达量最低,在‘695’品种枝条中的表达量最高。其在受玉米素、水杨酸、乙烯利和脱落酸处理的“桂热1号”叶片中显著上调表达,在赤霉素和过氧化氢处理的“桂热1号”叶片中表达差异不显著。推测MibZIP1与澳洲坚果抗逆性有关,为研发澳洲坚果新型栽培和激素调控技术提供理论指导。
中图分类号:
宋海云, 张涛, 贺鹏, 郑树芳, 王立丰, 王文林. 澳洲坚果MibZIP1基因克隆及表达规律分析[J]. 植物研究, 2023, 43(1): 131-139.
Haiyun SONG, Tao ZHANG, Peng HE, Shufang ZHENG, Lifeng WANG, Wenlin WANG. Cloning and Expression Analysis of MibZIP1 from Macadamia integrifolia[J]. Bulletin of Botanical Research, 2023, 43(1): 131-139.
图1
MibZIP1与其他物种bZIP转录因子的序列澳洲坚果MibZIP1(Macadamia integrifolia,XM_042651577.1);蒂罗花TsbZIP60(Telopea speciosissima,XP_043707929.1);荷花NnbZIP60(Nelumbo nucifera,XP_010270593.1);葡萄VvbZIP60(Vitis vinifera,XP_003634336.3);山核桃CibZIP60(Carya illinoinensis,XP_042991655.1);胡桃木JrbZIP60L(Juglans regia,XP_018832980.1)
1 | NOCK C J, BATEN A, MAULEON R,et al.Chromosome-scale assembly and annotation of the Macadamia genome (Macadamia integrifolia HAES741)[J].G3 Genes|Genomes|Genetics,2020,10(10):3497-3504. |
2 | SHUAI X X, DAI T, CHEN M S,et al.Comparative study of chemical compositions and antioxidant capacities of oils obtained from 15 Macadamia(Macadamia integrifolia) cultivars in China[J].Foods,2021,10(5):1031. |
3 | 曾辉,陆超忠,邹明宏,等.澳洲坚果新品种南亚1号的选育[J].中国果树,2013(1):1-3,187. |
ZENG H, LU C Z, ZOU M H,et al.Breeding of a new macadamia nut variety Nanya1[J].China Fruits,2013(1):1-3,187. | |
4 | 莫庆道,覃振师,赵大宣,等.澳洲坚果新品种-桂热1号[J].广西热带农业,2007(6):8-9. |
MO Q D, QIN Z S, ZHAO D Y,et al.New macadamia nut variety-Guire1[J].Tropical Agriculture in Guangxi,2007(6):8-9. | |
5 | 覃振师,王文林,何铣扬,等.5个澳洲坚果品种在广西龙州比较试验[J].中国果树,2011(3):43-45. |
QIN Z S, WANG W L, HE X Y,et al.Comparative experiment of 5 macadamia nut varieties in Longzhou,Guangxi[J].China Fruits,2011(3):43-45. | |
6 | 贺熙勇,陶丽,倪书邦,等.15个澳洲坚果品种在云南的产量及品质[J].热带作物学报,2009,30(10):1399-1407. |
HE X Y, TAO L, NI S B,et al.Yield and nut quality of 15 macadamia(Macadamia spp.) cultivars in Yunnan[J].Chinese Journal of Tropical Crops,2009,30(10):1399-1407. | |
7 | 方琦,丁铭,董家红,等.云南澳洲坚果苗木感染番茄斑萎病毒属病毒初报[J].园艺学报,2013,40(2):350-354. |
FANG Q, DING M, DONG J H,et al.Preliminary report of Tospovirus infecting Macadamia seedling in Yunnan,China[J].Acta Horticulturae Sinica,2013,40(2):350-354. | |
8 | 王文林,陈海生,郑树芳,等.干旱处理对澳洲坚果光合特性的影响[J].热带农业科学,2017,37(3):63-68,73. |
WANG W L, CHEN H S, ZHENG S F,et al.Effects of drought on the photosynthesis of Macadamia integrifolia [J].Chinese Journal of Tropical Agriculture,2017,37(3):63-68,73. | |
9 | 宫丽丹,马静,陶亮,等.持续干旱对澳洲坚果幼苗渗透调节能力的影响[J].热带农业科技,2018,41(3):23-26. |
GONG L D, MA J, TAO L,et al.Effect of persistent drought stress on osmotic adjustment of young macadamia tree[J].Tropical Agricultural Science & Technology,2018,41(3):23-26. | |
10 | 宫丽丹,倪书邦,贺熙勇,等.干旱胁迫下保水剂对澳洲坚果生长及水分特征参数的影响[J].热带农业科技,2017,40(1):17-19. |
GONG L D, NI S B, HE X Y,et al.Effects of hydrogel on Macadamia growth and its moisture characteristic parameters under drought stress[J].Tropical Agricultural Science & Technology,2017,40(1):17-19. | |
11 | MANAVELLA P A, ARCE A L, DEZAR C A,et al.Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor[J].The Plant Journal,2006,48(1):125-137. |
12 | MUÑIZ GARCÍA M N, GIAMMARIA V, GRANDELLIS C,et al.Characterization of StABF1,a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro [J].Planta,2012,235(4):761-778. |
13 | WEU T, DENG K J, LIU D Q,et al.Ectopic expression of DREB transcription factor,AtDREB1A,confers tolerance to drought in transgenic Salvia miltiorrhiza [J].Plant and Cell Physiol,2016,57(8):1593-1609. |
14 | LI H, CHEN J, ZHAO Q,et al.Basic leucine zipper(bZIP) transcription factor genes and their responses to drought stress in ginseng,Panax ginseng C.A.Meyer[J].BMC Genomics,2021,22(1):316. |
15 | JI C, MAO X, HAO J,et al.Analysis of bZIP transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii [J].Interbation Journal of Molecular Sciences,2018,19(9):2800. |
16 | ZHAO K, CHEN S, YAO W,et al.Genome-wide analysis and expression profile of the bZIP gene family in poplar[J].BMC Plant Biology,2021,21(1):122. |
17 | KUMAR P, PARVEEN A, SHARMA H,et al.Understanding the regulatory relationship of abscisic acid and bZIP transcription factors towards amylose biosynthesis in wheat[J].Molecular Biology Reports,2021,48(3):2473-2483. |
18 | LEE S C, LUAN S.ABA signal transduction at the crossroad of biotic and abiotic stress responses[J].Plant,Cell & Environ,2012,35(1):53-60. |
19 | AMOUTZIAS G, VERON A, WEINER J,et al.One billion years of bZIP transcription factor evolution:conservation and change in dimerization and DNA-binding site specificity[J].Moecularl Biology Evolution,2007,24(3):827-835. |
20 | WANG W W, WANG Y F, ZHANG S M,et al.Genome-wide analysis of the abiotic stress-related bZIP family in switchgrass[J].Molecular Biology Reports,2020,47(6):4439-4454. |
21 | RODRÍGUEZ-MARTÍNEZ J A, REINKE A W, BHIMSARIA D,et al.Combinatorial bZIP dimers display complex DNA-binding specificity landscapes[J].eLife,2017,6:e19272. |
22 | ASSUNÇÃO A G L, HERRERO E, LIN Y F,et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency[J].PNAS,2010,107(22):10296-10301. |
23 | HU W, YANG H, YAN Y,et al.Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava[J].Scientific Reports,2016,6:22783. |
24 | HEINEKAMP T, STRATHMANN A, KUHLMANN M,et al.The tobacco bZIP transcription factor BZI-1 binds the GH3 promoter in vivo and modulates auxin-induced transcriptio[J].The Plant Journal,2004,38(2):298-309. |
25 | 王文林,陈海生,张涛,等.澳洲坚果bHLH基因家族成员MibHLH48的结构与功能分析[J].分子植物育种,2021,19(15):4950-4958. |
WANG W L, CHEN H S, ZHANG T,et al.Structural and functional analysis of Macadamia integrifolia bHLH gene family member MibHLH48[J].Molecular Plant Breeding,2021,19(15):4950-4958. | |
26 | ZHANG L, ZHANG L, XIA C,et al.A novel wheat bZIP transcription factor,TabZIP60,confers multiple abiotic stress tolerances in transgenic Arabidopsis [J].Physiologia Plantarum,2015,153(4):538-554. |
27 | IWATA Y, FEDOROFF N V, KOIZUMI N. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic Reticulum stress response[J].The Plant Cell,2008,20(11):3107-3121. |
28 | WEIER S M, LINDEN V M G, GRASS I,et al.The use of bat houses as day roosts in macadamia orchards,South Africa[J].PeerJ,2019,7:e6954. |
29 | GUTIERREZ-COARITE R, PULAKKATU-THODI I, WRIGHT M G.Binomial sequential sampling plans for Macadamia felted coccid(Hemiptera:Eriococcidae) infesting Hawaii macadamia orchards[J].Environmental Entomology,2019,48(1):219-226. |
30 | 柳觐,孔广红,贺熙勇,等.乙烯利促落果提高澳洲坚果采收效率的研究[J].中国南方果树,2017,46(4):1-5. |
LIU Q, KONG G H, HE X Y,et al.Application of ethephon improved the efficiency of Macadamia harvesting[J].South China Fruits,2017,46(4):1-5. | |
31 | OEDA K, SALINAS J, CHUA N H.A tobacco bZip transcription activator(TAF-1) binds to a G-box-like motif conserved in plant genes[J].The EMBO Journal,1991,10(7):1793-1802. |
32 | HIROSE N, TAKEI K, KUROHA T,et al.Regulation of cytokinin biosynthesis,compartmentalization and translocation[J].Journal Experimental Botany,2008,59(1):75-83. |
33 | HANSEN C E, WENZLER H, MEINS F.Concentration gradients of trans-Zeatin riboside and trans-Zeatin in the maize stem:measurement by a specific enzyme immunoassay[J].Plant Physiology,1984,75(4):959-963. |
34 | GAJDOŠOVÁ S, SPÍCHAL L, KAMÍNEK M,et al.Distribution,biological activities,metabolism,and the conceivable function of cis-zeatin-type cytokinins in plants[J].Journal of Experimental Botany,2011,62(8):2827-2840. |
35 | JANDA M, RUELLAND E.Magical mystery tour:salicylic acid signalling[J].Environmental and Experimental Botany,2015,114:117-128. |
36 | WEI Y X, ZHU B B, LIU W,et al.Heat shock protein 90 co-chaperone modules fine-tune the antagonistic interaction between salicylic acid and auxin biosynthesis in cassava[J].Cell Reports,2021,34(5):108717. |
37 | LI N, HAN X, FENG D,et al.Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense:Do we understand what they are whispering?[J].International Journal of Molecular Sciences,2019,20(3):671. |
38 | RODRIGUEZ M C, CONTI G, ZAVALLO D,et al.TMV-Cg coat protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection[J].BMC Plant Biology,2014,14:210. |
39 | SHIM J S, JUNG C, LEE S,et al. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling[J].The Plant Journal,2013,73(3):483-495. |
40 | ZHANG Y, XIN L S, PIRRELLO J,et al.Ethylene response factors regulate expression of HbSUT3,the sucrose influx carrier in laticifers of Hevea brasiliensis [J].Tree Physiology,2021,41(7):1278-1288. |
41 | NI J B, ZHAO Y, TAO R Y,et al.Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits[J].Plant Biotechnology Journal,2020,18(5):1223-1240. |
42 | ZHOU S Q, ZHANG Y K, KREMLING K A,et al.Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots[J].New Phytologist,2019,221(4):2096-2111. |
43 | 孔广红,马静,柳觐,等.乙烯利诱使澳洲坚果落果的研究[J].西南大学学报(自然科学版),2018,40(7):18-24. |
KONG G H, MA J, LIU J,et al.Research on enhancing abscission of Macadamia nuts with ethephon[J].Journal of Southwest University(Natural Science Edition),2018,40(7):18-24. | |
44 | 柳觐,陈丽兰,倪书邦,等.喷施乙烯利对‘HAES900’澳洲坚果果实脱落和品质的影响[J].热带作物学报,2017,38(2):194-198. |
LIU J, CHEN L L, NI S B,et al.The effect of ethephon spraying on the fruit abscission and quality of Macadamia cultivar ‘HAES900’[J].Chinese Journal of Tropical Crops,2017,38(2):194-198. | |
45 | WANG Y H, QUE F, LI T,et al. DcABF3,an ABF transcription factor from carrot,alters stomatal density and reduces ABA sensitivity in transgenic Arabidopsis [J].Plant Science,2021,302:110699. |
46 | YAO L N, HAO X Y, CAO H L,et al.ABA-dependent bZIP transcription factor,CsbZIP18,from Camellia sinensis negatively regulates freezing tolerance in Arabidopsis [J].Plant Cell Reports,2020,39(4):553-565. |
47 | WEI X P, LU W J, MAO L C,et al.ABF2 and MYB transcription factors regulate feruloyl transferase FHT involved in ABA-mediated wound suberization of kiwifruit[J].Journal of Experimental Botany,2020,71(1):305-317. |
48 | WANG L F, ZHU J F, LI X M,et al.Salt and drought stress and ABA responses related to bZIP genes from V.radiata and V.angularis [J].Gene,2018,651:152-160. |
[1] | 张昊楠, 陈珊珊, 徐建民, 罗萍, 王晓萍, 许志茹, 范春节. 巨桉EgrWAT1基因克隆和功能初步分析[J]. 植物研究, 2023, 43(4): 601-611. |
[2] | 裘喻平, 王益川, 郭红卫. 植物根毛发育调控机制的研究进展[J]. 植物研究, 2023, 43(3): 321-332. |
[3] | 矫春晶, 李明月, 张鹏. 外源激素浸种与渗透处理对水曲柳种子热休眠的作用[J]. 植物研究, 2023, 43(3): 370-378. |
[4] | 刘建新, 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦叶片有机酸和激素含量的影响[J]. 植物研究, 2023, 43(1): 76-89. |
[5] | 覃碧, 王肖肖, 杨玉双, 聂秋海, 陈秋惠, 刘实忠. 橡胶草TkAPC10基因的鉴定及其表达模式分析[J]. 植物研究, 2022, 42(5): 830-839. |
[6] | 陈坤, 方功桂, 穆怀志, 姜静. 白桦BpPIN3基因启动子序列及应答特性分析[J]. 植物研究, 2022, 42(4): 592-601. |
[7] | 潘立本, 闫雪, 刘佳, 吴可心, 刘洋, 刘少冲. 东北林下早春植物开花的生理特征研究[J]. 植物研究, 2022, 42(4): 657-666. |
[8] | 黄东梅, 陈颖, 白露, 倪迪安, 徐奕扬, 张志国, 秦巧平. 萱草叶片响应低温胁迫的转录组分析[J]. 植物研究, 2022, 42(3): 424-436. |
[9] | 刘国彬, 廖婷, 王烨, 郭丽琴, 赵今哲, 姚砚武, 曹均. 金塔柏扦插不定根形成与内源激素的调控研究[J]. 植物研究, 2022, 42(2): 278-288. |
[10] | 张玉琦, 苏欣, 尤志强, 富金博, 詹亚光, 尹静. 不同激素处理对白桦幼树萌条及三萜合成的影响[J]. 植物研究, 2022, 42(2): 289-298. |
[11] | 杨蕴力, 渠畅, 王阳, 刘桂丰, 姜静. 白桦BpPIN5基因启动子组织定位及外源激素应答分析[J]. 植物研究, 2022, 42(1): 104-111. |
[12] | 杨宇宁, 董昊, 董实伟, 王乃锐, 宋跃, 张含国, 李淑娟. 长白落叶松转录因子LobHLH34克隆及表达分析[J]. 植物研究, 2022, 42(1): 112-120. |
[13] | 谭秋锦, 张涛, 韦媛荣, 郑树芳, 汤秀华, 王文林. 澳洲坚果开花相关MiMADS-box基因克隆及表达载体构建[J]. 植物研究, 2021, 41(6): 888-895. |
[14] | 张博超, 王佳琳, 殷缘, 车易达, 邓俊杰, 张荣沭. 山新杨PdPapWRKY51基因在胁迫条件下的组织表达模式[J]. 植物研究, 2021, 41(6): 911-920. |
[15] | 纪欣童, 于磊, 詹亚光. 水曲柳BZR1基因克隆及其表达模式分析[J]. 植物研究, 2021, 41(5): 744-752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||