植物研究 ›› 2022, Vol. 42 ›› Issue (2): 309-320.doi: 10.7525/j.issn.1673-5102.2022.02.016
• 生理与生态 • 上一篇
收稿日期:
2020-11-04
出版日期:
2022-03-20
发布日期:
2022-02-22
通讯作者:
张健
E-mail:sicauzhangjian@163.com
作者简介:
李勋(1990—)男,博士,副教授,主要从事林草生态研究。
基金资助:
Xun Li1, Yan Zhang1, Simeng Song1, Yang Zhou1, Jian Zhang2()
Received:
2020-11-04
Online:
2022-03-20
Published:
2022-02-22
Contact:
Jian Zhang
E-mail:sicauzhangjian@163.com
About author:
Li Xun(1990—),male,doctor,associate professor, engaged in forest and grass ecology.
Supported by:
摘要:
为了调整低山丘陵区低效林林分结构,探明马尾松(Pinus massoniana Lamb.)与乡土阔叶树种凋落叶混合分解过程中的全碳(C)释放规律。本研究以华南广泛分布的马尾松、檫木(Sassafras tzumu(Hemsl.) Hemsl)、香樟(Cinnamomum camphora(Linn) Presl)以及香椿(Toona sinensis(A. Juss.) Roem.)凋落叶为研究对象,将这4个树种凋落叶按照不同树种搭配以及混合比例组合为35个处理后进行野外分解实验,探讨C释放最佳的凋落叶树种组合以及混合比例。研究发现:4个单一树种凋落叶之间,香椿凋落叶的C释放最快,檫木和香樟凋落叶次之,马尾松凋落叶最慢。31个混合凋落叶中,C释放的非加和效应随着分解时间的延长表现出先升增强后减弱的趋势,且相对于其他季节,凋落叶在秋季的非加和效应有所减弱。一针一阔树种组合中,香樟凋落叶占比≥30%的处理:PC73和PC64的协同效应较强;一针两阔和一针三阔组合中,阔叶占比≥30%且含有香椿凋落叶的处理:PST613和712、PCT631和613、PSCT7111和6121的协同效应较强。
中图分类号:
李勋, 张艳, 宋思梦, 周扬, 张健. 马尾松与乡土阔叶树种凋落叶混合分解过程中全碳释放的动态变化[J]. 植物研究, 2022, 42(2): 309-320.
Xun Li, Yan Zhang, Simeng Song, Yang Zhou, Jian Zhang. Dynamic Changes of Total Carbon Release During Mixed Decomposition of Leaf Litter of Pinus massoniana and Native Broad-leaved Tree Species[J]. Bulletin of Botanical Research, 2022, 42(2): 309-320.
表1
样地基本信息(平均值±标准差)
样地 Sampling plots | 土壤pH Soil pH | 土壤全碳 Soil total carbon /(g·kg-1) | 土壤全氮 Soil total nitrogen /(g·kg-1) | 土壤容重 Soil bulk density /(g·cm-3) | 海拔 Altitude /m | 坡度 Slope /(°) | 坡向 Aspect |
---|---|---|---|---|---|---|---|
1 | 4.6±0.2 | 14.27±2.01 | 0.73±0.15 | 1.42±0.03 | 811.22±13.35 | 10.67±5.31 | S |
2 | 4.1±0.1 | 13.67±2.11 | 0.70±0.11 | 1.41±0.11 | 824.94±11.45 | 13.11±6.31 | SE |
3 | 4.1±0.1 | 14.11±3.12 | 0.70±0.21 | 1.42±0.14 | 812.44±12.35 | 16.23±4.06 | SE |
表2
实验处理
混合处理 Mixed model | 树种组合 Tree species combination | 缩写 Abbreviation | 混合比例 Mixed proportion |
---|---|---|---|
对照Contrast | 马尾松、檫木、香樟、香椿 P. massoniana,S. tzumu,C. camphora,T. sinensis | P/S/C/T | 10∶— |
一针一阔 Pinus massoniana+one native tree species | 马尾松+香樟 P. massoniana+C. camphora | PC | 8∶2、7∶3、6∶4 |
马尾松+檫木 P. massoniana+S. tzumu | PS | 8∶2、7∶3、6∶4 | |
马尾松+香椿 P. massoniana+C. camphora | PT | 8∶2、7∶3、6∶4 | |
一针两阔 Pinus massoniana+two native tree species | 马尾松+檫木+香樟 P. massoniana+S. tzumu+C. camphora | PSC | 8∶1∶1、7∶2∶1、7∶1∶2、 6∶2∶2、6∶3∶1、6∶1∶3 |
马尾松+香樟+香椿 P. massoniana+C. camphora+T. sinensis | PCT | 8∶1∶1、7∶2∶1、7∶1∶2、 6∶2∶2、6∶3∶1、6∶1∶3 | |
马尾松+檫木+香椿 P. massoniana+S. tzumu+T. sinensis | PST | 8∶1∶1、7∶2∶1、7∶1∶2、 6∶2∶2、6∶3∶1、6∶1∶3 | |
一针三阔 Pinus massoniana+three native tree species | 马尾松+檫木+香樟+香椿 P. massoniana+S. tzumu+C. camphora+T. sinensis | PSCT | 7∶1∶1∶1、6:2∶1∶1、 6∶1∶1∶2、6∶1∶2∶1 |
表4
单一树种凋落叶初始质量特征(平均值±标准差)
初始物质含量 Initial concentration | 马尾松 P. massoniana | 檫木 S. tzumu | 香樟 C. camphora | 香椿 T. sinensis |
---|---|---|---|---|
C /(g·kg-1) | 452.71±6.27A | 413.74±2.77B | 420.77±6.32B | 378.95±2.42C |
N /(g·kg-1) | 6.07±0.41C | 6.37±0.40BC | 8.22±0.47B | 11.46±0.40A |
P /(g·kg-1) | 0.92±0.02C | 0.88±0.02BC | 1.11±0.07B | 1.41±0.06A |
木质素 Lignin /(g·kg-1) | 351.07±8.64A | 173.01±9.96B | 149.63±4.16BC | 134.4±6.02C |
纤维素 Cellulose /(g·kg-1) | 136.46±12.72A | 96.83±4.54B | 144.72±5.81A | 99.19±3.51B |
总酚 Total phenol /(g·kg-1) | 54.17±2.10A | 35.42±0.11B | 14.82±0.30D | 29.05±0.44C |
缩合单宁Condensed tannin /(g·kg-1) | 24.75±0.77A | 14.37±0.43B | 13.38±0.07B | 3.67±0.01C |
C/N | 75.34±5.43A | 65.47±3.93AB | 51.52±2.81B | 33.16±1.33C |
C/P | 492.79±16.40A | 472.55±11.19AB | 380.54±21.27B | 269.45±8.99C |
N/P | 6.59±0.38A | 7.26±0.35A | 7.47±0.76A | 8.17±0.54A |
木质素/N Lignin/N | 58.24±2.86A | 27.50±2.92B | 18.38±1.52BC | 11.76±0.67C |
附表1
混合树种凋落叶初始质量特征(平均值±标准差)
凋落物组合 Treatments | C /(g·kg-1) | N /(g·kg-1) | P /(g·kg-1) | 木质素 Lignin /(g·kg-1) | 纤维素 Cellulose /(g·kg-1) | 总酚 Total phenol /(g·kg-1) | 缩合单宁 Condensed tannin /(g·kg-1) | C/N | C/P | N/P | 木质素/N Lignin/N | 木质素/P Lignin/P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PT82 | 437.96±7.26 | 7.15±0.35 | 1.02±0.03 | 307.74±9.20 | 129.01±15.28 | 49.15±2.26 | 20.54±0.87 | 61.43±3.07 | 430.50±13.47 | 7.02±0.18 | 43.11±0.93 | 302.29±4.35 |
PT73 | 430.58±6.49 | 7.68±0.23 | 1.07±0.03 | 286.07±7.85 | 125.28±13.93 | 46.63±1.91 | 18.43±0.76 | 56.08±1.72 | 403.78±10.73 | 7.20±0.03 | 37.23±0.16 | 268.10±0.52 |
PT64 | 423.20±5.76 | 8.22±0.12 | 1.12±0.03 | 264.40±6.69 | 121.55±12.59 | 44.12±1.56 | 16.32±0.66 | 51.47±0.83 | 379.46±9.30 | 7.37±0.12 | 32.15±0.36 | 236.96±2.50 |
PS82 | 444.92±6.67 | 6.13±0.53 | 0.91±0.03 | 315.46±9.61 | 128.54±13.58 | 50.42±2.39 | 64.94±0.28 | 73.16±6.39 | 488.76±19.24 | 6.72±0.48 | 51.75±3.04 | 346.25±8.27 |
PS73 | 441.02±5.60 | 6.16±0.52 | 0.91±0.03 | 297.65±8.73 | 124.57±11.41 | 48.55±2.10 | 66.04±0.28 | 72.12±5.87 | 486.74±17.51 | 6.78±0.47 | 48.58±2.8 | 328.21±4.81 |
PS64 | 437.12±4.59 | 6.19±0.51 | 0.90±0.03 | 279.85±8.29 | 120.61±9.30 | 46.67±1.81 | 67.13±0.32 | 71.10±5.45 | 484.72±16.02 | 6.85±0.45 | 45.45±2.74 | 310.03±1.45 |
PC82 | 446.32±5.31 | 6.5±0.58 | 0.96±0.03 | 310.78±9.70 | 138.11±13.46 | 46.30±2.45 | 22.48±0.85 | 69.29±6.65 | 466.09±18.62 | 6.78±0.64 | 48.13±3.43 | 324.62±17.54 |
PC73 | 443.13±3.53 | 6.71±0.58 | 0.98±0.03 | 290.64±8.51 | 138.94±11.27 | 42.37±2.20 | 21.34±0.74 | 66.56±6.21 | 453.70±18.51 | 6.88±0.70 | 43.57±3.19 | 297.75±18.24 |
PC64 | 439.93±1.75 | 6.93±0.59 | 1.00±0.04 | 270.50±7.41 | 139.77±9.18 | 38.43±1.94 | 20.21±0.63 | 64.01±5.81 | 441.87±19.41 | 6.97±0.75 | 39.30±3.00 | 271.95±18.56 |
PST811 | 441.44±6.97 | 6.64±0.44 | 0.96±0.03 | 311.60±9.39 | 128.77±14.43 | 49.78±2.32 | 21.61±0.81 | 66.80±4.43 | 458.00±15.98 | 6.87±0.32 | 47.07±1.77 | 323.04±6.07 |
PST721 | 437.54±5.90 | 6.67±0.42 | 0.96±0.03 | 293.79±8.41 | 124.81±12.24 | 47.91±2.03 | 20.57±0.64 | 65.88±3.96 | 455.98±14.58 | 6.94±0.30 | 44.17±1.59 | 305.93±2.97 |
PST712 | 434.06±6.20 | 7.18±0.32 | 1.01±0.03 | 289.93±8.11 | 125.05±13.08 | 47.27±1.97 | 19.50±0.70 | 60.61±2.61 | 428.49±12.37 | 7.08±0.15 | 40.44±0.72 | 286.01±1.58 |
PST631 | 433.64±4.88 | 6.70±0.41 | 0.96±0.03 | 275.98±7.85 | 120.85±10.10 | 46.03±1.74 | 19.53±0.47 | 64.98±3.60 | 453.96±13.45 | 7.00±0.29 | 41.31±1.65 | 288.69±0.05 |
PST622 | 430.16±5.17 | 7.21±0.31 | 1.01±0.03 | 272.12±7.43 | 121.08±10.92 | 45.40±1.68 | 18.46±0.53 | 59.79±2.25 | 426.48±11.57 | 7.14±0.14 | 37.8±0.85 | 269.61±1.13 |
PST613 | 426.68±5.46 | 7.71±0.21 | 1.06±0.03 | 268.26±7.04 | 121.32±11.75 | 44.76±1.62 | 17.39±0.59 | 55.34±1.31 | 401.78±10.24 | 7.26±0.02 | 34.78±0.33 | 252.46±1.93 |
PSC811 | 445.62±5.98 | 6.31±0.55 | 0.94±0.02 | 313.12±9.45 | 133.33±13.47 | 48.36±2.42 | 22.58±0.80 | 71.16±6.50 | 477.05±17.76 | 6.75±0.56 | 49.88±3.15 | 335.09±12.96 |
PSC721 | 441.72±4.90 | 6.34±0.53 | 0.93±0.02 | 295.31±8.20 | 129.36±11.25 | 46.49±2.13 | 21.54±0.63 | 70.14±5.93 | 474.99±15.45 | 6.81±0.54 | 46.79±2.72 | 317.42±9.50 |
PSC712 | 442.42±4.21 | 6.53±0.55 | 0.95±0.02 | 292.98±8.12 | 134.15±11.20 | 44.43±2.16 | 21.44±0.69 | 68.29±6.06 | 464.00±16.09 | 6.84±0.61 | 45.13±2.89 | 307.29±14.04 |
PSC631 | 437.83±3.87 | 6.37±0.51 | 0.93±0.02 | 277.51±7.32 | 125.40±9.06 | 44.61±1.84 | 20.50±0.47 | 69.14±5.45 | 472.93±13.24 | 6.88±0.51 | 43.75±2.46 | 299.61±6.19 |
PSC622 | 438.53±3.15 | 6.56±0.52 | 0.95±0.02 | 275.17±6.80 | 130.19±8.96 | 42.55±1.87 | 20.40±0.52 | 67.32±5.52 | 461.91±13.56 | 6.91±0.59 | 42.17±2.47 | 289.83±10.68 |
PSC613 | 439.23±2.44 | 6.74±0.55 | 0.97±0.03 | 272.83±6.83 | 134.98±9.00 | 40.49±1.91 | 20.30±0.57 | 65.61±5.65 | 451.58±16.05 | 6.94±0.67 | 40.68±2.68 | 280.63±14.79 |
PCT811 | 442.14±6.28 | 6.82±0.46 | 0.99±0.02 | 309.26±9.35 | 133.56±14.34 | 47.73±2.36 | 21.51±0.86 | 65.13±4.65 | 447.63±14.2 | 6.90±0.40 | 45.47±2.05 | 313.00±10.41 |
PCT721 | 438.95±4.51 | 7.04±0.47 | 1.01±0.02 | 289.12±8.06 | 134.39±12.08 | 43.79±2.10 | 20.37±0.75 | 62.67±4.37 | 435.83±12.40 | 6.98±0.46 | 41.21±1.97 | 287.08±11.50 |
PCT712 | 434.76±5.50 | 7.36±0.35 | 1.04±0.02 | 287.59±7.84 | 129.83±12.98 | 45.21±2.00 | 19.40±0.76 | 59.2±2.89 | 419.25±9.66 | 7.09±0.24 | 39.12±0.98 | 277.23±5.64 |
PCT631 | 435.75±2.74 | 7.25±0.47 | 1.03±0.02 | 268.97±6.83 | 135.21±9.89 | 39.86±1.85 | 19.23±0.63 | 60.36±4.10 | 424.57±12.27 | 7.07±0.52 | 37.21±1.92 | 262.17±12.27 |
PCT622 | 431.57±3.74 | 7.58±0.35 | 1.06±0.01 | 267.45±6.49 | 130.66±10.71 | 41.28±1.75 | 18.26±0.64 | 57.10±2.73 | 408.50±7.36 | 7.17±0.31 | 35.35±1.03 | 253.14±6.82 |
PCT613 | 427.39±4.75 | 7.90±0.23 | 1.09±0.02 | 265.93±6.44 | 126.11±11.62 | 42.70±1.65 | 17.29±0.65 | 54.15±1.64 | 393.50±6.57 | 7.27±0.10 | 33.67±0.31 | 244.76±2.17 |
PSCT7111 | 438.24±5.20 | 6.85±0.43 | 0.98±0.02 | 291.45±8.00 | 129.60±12.11 | 45.85±2.07 | 20.47±0.69 | 67.75±5.76 | 457.21±15.3 | 6.90±0.42 | 46.53±2.96 | 310.20±9.41 |
PSCT6211 | 434.35±4.16 | 6.88±0.41 | 0.98±0.02 | 273.65±6.99 | 125.63±9.90 | 43.97±1.78 | 19.43±0.53 | 63.34±3.71 | 443.54±10.29 | 7.02±0.35 | 39.85±1.43 | 279.32±4.45 |
PSCT6121 | 435.05±3.45 | 7.07±0.44 | 1.00±0.02 | 271.31±6.62 | 130.42±9.83 | 41.91±1.81 | 19.33±0.58 | 61.81±3.88 | 433.76±10.11 | 7.04±0.44 | 38.49±1.58 | 270.49±8.53 |
PSCT6112 | 430.87±4.45 | 7.39±0.32 | 1.03±0.02 | 269.79±6.69 | 125.87±10.76 | 43.34±1.72 | 18.36±0.59 | 58.41±2.46 | 417.21±8.11 | 7.15±0.21 | 36.54±0.70 | 261.14±3.14 |
1 | 严海元,辜夕容,申鸿.森林凋落物的微生物分解[J].生态学杂志,2010,29(9):1827-1835. |
Yan H Y,Gu X R,Shen H.Microbial decomposition of forest litter:a review[J].Chinese Journal of Ecology,2010,29(9):1827-1835. | |
2 | 田奥,王加国,韩振诚,等.百里杜鹃林区马缨杜鹃凋落物花叶混合比例对分解的影响[J].林业科学,2020,56(8):1-10. |
Tian A,Wang J G,Han Z C,et al.Impacts on decomposition of flower to leaf ration in the litter of Rhododendron delavayi in Baili Azalea forest area of Guizhou province[J].Scientia Silvae Sinicae,2020,56(8):1-10. | |
3 | 王利峰.高山林线植物功能群丧失对凋落物分解及化学计量特征的影响[D].雅安:四川农业大学,2018. |
Wang L F.Consequences of deficiency plant species functional groups for stoichiometry during litter decomposition across an alpine forest-tundra ecotone[D].Ya′an:Sichuan Agricultural University,2018. | |
4 | 李宜浓,周晓梅,张乃莉,等.陆地生态系统混合凋落物分解研究进展[J].生态学报,2016,36(16):4977-4987. |
Li Y N,Zhou X M,Zhang N L,et al.The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J].Acta Ecologica Sinica,2016,36(16):4977-4987. | |
5 | Salamanca E F, Kaneko N, Katagiri S.Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods[J].Ecological Engineering,1998,10(1):53-73. |
6 | 王欣,郭延朋,赵辉,等.华北落叶松与白桦叶凋落物混合分解及其养分动态[J].林业与生态科学,2018,33(1):29-36. |
Wang X,Guo Y P,Zhao H,et al.Decomposition characteristics and its nutrient dynamics of the leaf litter mixtures of Larix principis-rupprechtii and Betula platyphylla[J].Forestry and Ecological Sciences,2018,33(1):29-36. | |
7 | 李云,周建斌,董燕捷,等.黄土高原不同植物凋落物的分解特性[J].应用生态学报,2012,23(12):3309-3316. |
Li Y,Zhou J B,Dong Y J,et al.Decomposition of different plant litters in Loess Plateau of Northwest China[J].Chinese Journal of Applied Ecology,2012,23(12):3309-3316. | |
8 | Fan H B,Liu W F,Wu J P,et al.Ecosystem carbon pools in mixed stands of hardwood species and masson pine[J].Journal of Tropical Forest Science,2013,25(2):154-165. |
9 | Kuang Y W,Sun F F,Wen D Z,et al.Tree-ring growth patterns of Masson pine(Pinus massoniana L.)during the recent decades in the acidification Pearl River Delta of China[J].Forest Ecology and Management,2008,255(8-9):3534-3540. |
10 | 李勋,张丹桔,张艳,等.林窗边缘效应对马尾松和香樟凋落叶分解的影响[J].应用与环境生物学报,2017,23(3):570-578. |
Li X,Zhang D J,Zhang Y,et al.The edge effect of a forest gap on decomposition of Pinus massoniana and Cinnamomum camphora leaf litter[J].Chinese Journal of Applied & Environmental Biology,2017,23(3):570-578. | |
11 | 李明军,杜明凤,聂朝俊.马尾松人工林地力维护研究进展[J].世界林业研究,2014,27(5):31-36. |
Li M J,Du M F,Nie C J.Research advances in soil improvement of Pinus massoniana plantation[J].World Forestry Research,2014,27(5):31-36. | |
12 | 李勋,张健,杨万勤,等.红椿凋落叶全碳释放的林窗效应[J].自然资源学报,2016,31(7):1114-1126. |
Li X,Zhang J,Yang W Q,et al.Effect of forest gap on carbon release of Toona Ciliata leaf litter[J].Journal of Natural Resources,2016,31(7):1114-1126. | |
13 | 代力民,徐振邦,张扬建,等.红松针叶的凋落及其分解速率研究[J].生态学报,2001,21(8):1296-1300. |
Dai L M,Xu Z B,Zhang Y J,et al.Study on decomposition rate and fall of Pinus koraiensis needle[J].Acta Ecologica Sinica,2001,21(8):1296-1300. | |
14 | 夏建国,邓良基,张丽萍,等.四川土壤系统分类初步研究[J].四川农业大学学报,2002,20(2):117-122. |
Xia J G,Deng L J,Zhang L P,et al.Study on soil taxonomy in Sichuan[J].Journal of Sichuan Agricultural University,2002,20(2):117-122. | |
15 | 于东升,史学正,王洪杰,等.铁铝土的发生分类与系统分类参比特征[J].地理学报,2004,59(5):671-679. |
Yu D S,Shi X Z,Wang H J,et al.The characteristics of ferralosols references between Chinese soil taxonomy and genetic soil classification of China [J].Acta Geographica Sinica,2004,59(5):671-679. | |
16 | 杨先锋,叶金山.关于杉木大径材定向培育几项措施的初步探讨[J].江西林业科技,2001,(2):32-34. |
Yang X F,Ye J S.Preliminary study on directed cultivation methods for big diameter timber of Cunninghamia lanceolata[J].Jiangxi Forestry Science and Technology,2001,(2):32-34. | |
17 | 吕树英.关于营造混交林的几个基本观点[J].云南林业科技,2001,1(1):26-28. |
Lu S Y.Several basic viewpoints on construction of mixed forests[J].Yunnan Forestry Science and Technology,2001,1(1):26-28. | |
18 | Vanderbilt K L,White C S,Hopkins O,et al.Aboveground decomposition in arid environments:results of a long-term study in central New Mexico[J].Journal of Arid Environments,2008,72(5):696-709. |
19 | Kraus T E C,Dahlgren R A,Zasoski R J.Tannins in nutrient dynamics of forest ecosystems-a review[J].Plant and Soil,2003,256(1):41-66. |
20 | Schofield P,Mbugua D M,Pell A N.Analysis of condensed tannins:a review[J].Animal Feed Science and Technology,2001,91(1-2):21-40. |
21 | Gartner T B,Cardon Z G.Decomposition dynamics in mixed-species leaf litter[J].Oikos,2004,104(2):230-246. |
22 | 李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,2004,23(6):77-83. |
Li Z A,Zou B,Ding Y Z,et al.Key factors of forest litter decomposition and research progress[J].Chinese Journal of Ecology,2004,23(6):77-83. | |
23 | Zeng L X,He W,Teng M J,et al.Effects of mixed leaf litter from predominant afforestation tree species on decomposition rates in the Three Gorges Reservoir,China[J].Science of the Total Environment,2018,639:679-686. |
24 | Slade E M,Riutta T.Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments[J].Basic and Applied Ecology,2012,13(5):423-431. |
25 | Butenschoen O,Krashevska V,Maraun M,et al.Litter mixture effects on decomposition in tropical montane rainforests vary strongly with time and turn negative at later stages of decay[J].Soil Biology and Biochemistry,2014,77:121-128. |
26 | Kominoski J S,Pringle C M,Ball B A,et al.Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream[J].Ecology,2007,88(5):1167-1176. |
27 | Ball B A,Bradford M A,Hunter M D.Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay[J].Ecosystems,2009,12(1):87-100. |
28 | Meier C L,Bowman W D.Links between plant litter chemistry,species diversity,and below-ground ecosystem function[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(50):19780-19785. |
29 | Schimel J P,Hättenschwiler S.Nitrogen transfer between decomposing leaves of different N status[J].Soil Biology and Biochemistry,2007,39(7):1428-1436. |
30 | Tanya Handa I,Aerts R,Berendse F,et al.Consequences of biodiversity loss for litter decomposition across biomes[J].Nature,2014,509(7499):218-221. |
31 | 宋影,辜夕容,严海元,等.中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态[J].环境科学,2014,35(3):1151-1158. |
Song Y,Gu X R,Yan H Y,et al.Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area[J].Environmental Science,2014,35(3):1151-1158. | |
32 | 张圣喜,陈法霖,郑华.土壤微生物群落结构对中亚热带三种典型阔叶树种凋落物分解过程的响应[J].生态学报,2011,31(11):3020-3026. |
Zhang S X,Chen F L,Zheng H.Response of soil microbial community structure to the leaf litter decomposition of three typical broadleaf species in mid-subtropical area,southern China[J].Acta Ecologica Sinica,2011,31(11):3020-3026. | |
33 | Cizungu L,Staelens J,Huygens D,et al.Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation[J].Forest Ecology and Management,2014,326:109-116. |
34 | Kaneko N,Salamanca F.Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak-pine stand in Japan[J].Ecological Research,1999,14(2):131-138. |
35 | Sinsabaugh R L,Antibus R K,Linkins A E.An enzymic approach to the analysis of microbial activity during plant litter decomposition[J].Agriculture,Ecosystems & Environment,1991,34(1-4):43-54. |
36 | Smith V C,Bradford M A.Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time[J].Applied Soil Ecology,2003,24(2):197-203. |
37 | Zhang Q S,Zak J C.Effects of gap size on litter decomposition and microbial activity in a subtropical forest[J].Ecology,1995,76(7):2196-2204. |
38 | Makkonen M,Berg M P,Van Logtestijn R S P,et al.Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory[J].Oikos,2013,122(7):987-997. |
39 | 王文君,杨万勤,谭波,等.四川盆地亚热带常绿阔叶林不同物候期凋落物分解与土壤动物群落结构的关系[J].生态学报,2013,33(18):5737-5750. |
Wang W J,Yang W Q,Tan B,et al.The dynamics of soil fauna community during litter decomposition at different phenological stages in the subtropical evergreen broad-leaved forests in Sichuan basin[J].Acta Ecologica Sinica,2013,33(18):5737-5750. | |
40 | 陈法霖,郑华,阳柏苏,等.中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响[J].生态学报,2011,31(11):3027-3035. |
Chen F L,Zheng H,Yang B S,et al.The decomposition of coniferous and broadleaf mixed litters significantly changes the carbon metabolism diversity of soil microbial communities in subtropical area,southern China[J].Acta Ecologica Sinica,2011,31(11):3027-3035. | |
41 | 熊勇,许光勤,吴兰.混合凋落物分解非加和性效应研究进展[J].环境科学与技术,2012,35(9):56-60,120. |
Xiong Y,Xu G Q,Wu L.Progress on non-additive effects of mixed litter decomposition[J].Environmental Science & Technology,2012,35(9):56-60,120. | |
42 | 许晓静,张凯,刘波,等.森林凋落物分解研究进展[J].中国水土保持科学,2007,5(4):108-114. |
Xu X J,Zhang K,Liu B,et al.Review on litter decomposition in forest ecosystems[J].Science of Soil and Water Conservation,2007,5(4):108-114. |
[1] | 周扬, 张丹桔, 宋思梦, 李勋, 张艳, 张健. 林窗大小对马尾松林下3种更新草本植物N、P化学计量研究[J]. 植物研究, 2017, 37(6): 915-925. |
[2] | 张振, 余启新, 滕国新, 金国庆, 丰忠平, 周志春. 马尾松三代选择群体生长性状变异及选择研究[J]. 植物研究, 2017, 37(2): 266-273. |
[3] | 魏大平, 张丹桔, 李勋, 张艳, 李川北, 张健. 不同林窗马尾松凋落叶与土壤养分变化研究[J]. 植物研究, 2017, 37(1): 128-138. |
[4] | 李勋1;刘洋1,2,3;张艳1;刘华1;杨万勤1,2,3;张健1,2,3*. 马尾松人工林林窗内土壤动物作用下凋落叶C元素的动态变化[J]. 植物研究, 2016, 36(2): 195-203. |
[5] | 李婉婷;姜立春;万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3): 343-348. |
[6] | 熊能;金则新*;陈琢. 千岛湖姥山马尾松种群结构和分布格局研究[J]. 植物研究, 2010, 30(5): 537-542. |
[7] | 王献溥, 蒋高明. 广西马尾松林分类、分布和演替的研究[J]. 植物研究, 2002, 22(2): 151-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||