植物研究 ›› 2021, Vol. 41 ›› Issue (2): 251-261.doi: 10.7525/j.issn.1673-5102.2021.02.013
收稿日期:
2020-06-17
出版日期:
2021-03-20
发布日期:
2021-01-05
通讯作者:
杨传平
E-mail:yangcp@nefu.edu.cn
作者简介:
郭依萍(1994—),女,硕士研究生,主要从事木材形成的分子基础研究。
基金资助:
Yi-Ping GUO, Jia-Xin LIU, Ying YU, Chao WANG, Chuan-Ping YANG()
Received:
2020-06-17
Online:
2021-03-20
Published:
2021-01-05
Contact:
Chuan-Ping YANG
E-mail:yangcp@nefu.edu.cn
About author:
GUO Yi-Ping(1994—),female,master,major in molecular mechanism of wood formation.
Supported by:
摘要:
NAC转录因子成员被认为是调控植物次生壁合成的开关。前期研究结果显示BpNAC012基因的表达能够调控白桦次生细胞壁的合成。为研究BpNAC012调控的下游靶基因,本研究分别以该基因的过表达,抑制表达株系茎为材料构建转录组,以野生型为对照分析差异表达基因。结果显示:与对照相比,过表达株系OE中上调的基因有627条,下调的基因有229条,抑制表达株系中上调的基因有299条,下调表达的基因有207条。过表达BpNAC012相对于抑制表达能够调控更多的基因表达变化。而抑制表达BpNAC012更多的是影响蛋白修饰和转运类基因的表达变化。在差异表达基因中,涉及受体信号通路,营养代谢,氨基酸合成,及苯丙烷生物合成相关代谢通路基因比较富集。BpNAC012能够调控纤维素、木质素合成及木质部发育相关基因的表达变化,同时能够调控多种转录因子的表达变化。该研究为深入分析BpNAC012在白桦次生细胞壁合成的分子调控机制奠定基础。
中图分类号:
郭依萍, 刘佳欣, 于颖, 王超, 杨传平. 白桦BpNAC012基因调控白桦木质部发育表达谱分析[J]. 植物研究, 2021, 41(2): 251-261.
Yi-Ping GUO, Jia-Xin LIU, Ying YU, Chao WANG, Chuan-Ping YANG. Expression Profile Analysis ofXylem Development Regulated by BpNAC012 Gene from Betula platyphylla[J]. Bulletin of Botanical Research, 2021, 41(2): 251-261.
表1
数据产出质量情况一览表
样本 Sample | 原始序列 Original sequence | 过滤数据 Filter data | 测序量 Sequencing volume | 错误率 Error rate(%) | Q20(%) | Q30(%) | GC(%) |
---|---|---|---|---|---|---|---|
WT_1 | 56242018 | 55322414 | 8.3G | 0.03 | 97.48 | 92.81 | 46.34 |
WT_2 | 58518124 | 56683910 | 8.5G | 0.03 | 97.55 | 92.97 | 46.30 |
WT_3 | 52203502 | 50544932 | 7.58G | 0.03 | 97.42 | 92.71 | 46.30 |
OE_1 | 58644414 | 57292724 | 8.59G | 0.03 | 97.81 | 93.58 | 46.46 |
OE_2 | 59189588 | 57679272 | 8.65G | 0.03 | 97.34 | 92.52 | 46.55 |
OE_3 | 56973490 | 56366534 | 8.45G | 0.03 | 97.81 | 93.59 | 46.45 |
RS_1 | 51023786 | 50389048 | 7.56G | 0.03 | 97.52 | 92.95 | 46.56 |
RS_2 | 54950226 | 54540828 | 8.18G | 0.03 | 97.33 | 92.47 | 46.51 |
RS_3 | 57784458 | 57021886 | 8.55G | 0.03 | 97.26 | 92.35 | 46.37 |
表3
基因注释成功率统计
基因数量 Number of genes | 百分率 Percentage(%) | |
---|---|---|
NR数据库所占比例Proportion of NR database | 117 364 | 65.57 |
NT数据库所占比例Proportion of NT database | 92 957 | 51.93 |
KO数据库所占比例Proportion of KO database | 44 707 | 24.97 |
SwissProt数据库所占比例Proportion of SwissProt database | 86 603 | 48.38 |
PFAM数据库所占比例Proportion of PFAM database | 84 724 | 47.33 |
GO数据库所占比例Proportion of GO database | 86 008 | 48.05 |
KOG数据库所占比例Proportion of KOD database | 29 536 | 16.50 |
7大数据库共同出现的比例The proportion of 7 major databases | 18 243 | 10.19 |
至少一个数据库注释成功的比例Proportion of at least one database annotation success | 129 213 | 72.19 |
总基因数Total genes | 178 983 | 100.00 |
表4
样品中差异基因富集的Gene Ontology分类
数据库中唯一的标号信息 GO accession gene ontology | 功能的描述信息 Description gene ontology | 为该GO的类别 Term type | 富集分析统计学显著水平 Over represented p-value | 校正后的p-value Corrected p-value | DEG item | DEG list |
---|---|---|---|---|---|---|
GO:0001071 | nucleic acid binding transcription factor activity | molecular_function | 5.8636e-17 | 1.7558e-13 | 60 | 581 |
GO:0003700 | transcription factor activity, sequence-specific DNA binding | molecular_function | 5.8636e-17 | 1.7558e-13 | 60 | 581 |
GO:0005667 | transcription factor complex | cellular_component | 7.2294e-14 | 1.4432e-10 | 66 | 581 |
GO:0006355 | regulation of transcription, DNA-templated | biological_process | 1.0952e-08 | 1.3118e-05 | 85 | 581 |
表5
过表达株系中差异表达倍数最高的前10位基因
基因ID Gene_id | log2倍数变化log2 fold change | 基因长度 Gene length | NR GI | NR ID | NR评估 NR evalue | NR注释 NR description |
---|---|---|---|---|---|---|
Cluster-12857.66427 | 13.492 | 2 378 | 118132570 | ABK60177.1 | 4.80E-16 | conserved hypothetical protein[Streptomyces ghanaensis ATCC 14672] |
Cluster-12857.79868 | 11.786 | 4 286 | 645227348 | XP_008220472.1 | 0.00E+00 | PREDICTED: glycine dehydrogenase(decarboxylating),mitochondrial[Prunus mume] |
Cluster-12857.83191 | 11.500 | 3 565 | 802581682 | XP_012069851.1 | 2.40E-205 | PREDICTED:probable methyltransferase PMT3[Jatropha curcas] |
Cluster-12857.66430 | 11.254 | 2 133 | 566183478 | XP_002311438.2 | 8.50E-190 | DNA-binding protein RAV2[Populus trichocarpa] |
Cluster-12857.97128 | 10.632 | 2 699 | 720084019 | XP_010243074.1 | 2.60E-159 | PREDICTED:probable phenylalanine--tRNA ligase alpha subunit[Nelumbo nucifera] |
Cluster-12857.60814 | 10.592 | 8 563 | 645275167 | XP_008242682.1 | 0.00E+00 | PREDICTED:dnaJ homolog subfamily C GRV2 isoform X2[Prunus mume] |
Cluster-12857.62522 | 10.323 | 3 186 | 590658081 | XP_007034748.1 | 1.50E-294 | No lysine kinase 1 isoform 1[Theobroma cacao] |
Cluster-12857.109476 | 10.191 | 1 118 | 590634122 | XP_007028287.1 | 3.30E-116 | 2,4-dienoyl-CoA reductase isoform 2[Theobroma cacao] |
Cluster-12857.80721 | 9.689 3 | 2 946 | 645260833 | XP_008236004.1 | 1.20E-197 | PREDICTED: amino acid permease 3-like[Prunus mume] |
Cluster-12857.54251 | 9.565 4 | 945 | 723712802 | XP_010323300.1 | 1.50E-21 | PREDICTED: cucumber peeling cupredoxin-like[Solanum lycopersicum] |
表6
抑制表达株系中差异表达倍数最高的前10位基因
基因ID Gene_id | log2倍数变化 log2 fold change | 基因长度 Gene length | NR GI | NR ID | NR评估 NR evalue | NR说明 NR description |
---|---|---|---|---|---|---|
Cluster-12857.25938 | -11.44 8 | 2 910 | 645278673 | XP_008244338.1 | 4.70E-183 | PREDICTED:kinesin-3[Prunus mume] |
Cluster-12857.85041 | -9.912 4 | 4 383 | 449456208 | XP_004145842.1 | 1.60E-126 | PREDICTED:UTP--glucose-1-phosphate uridylyltransferase[Cucumis sativus] |
Cluster-12857.98081 | -9.167 2 | 4 075 | 297745750 | CBI15806.3 | 3.60E-35 | unnamed protein product[Vitis vinifera] |
Cluster-12857.25935 | -9.037 2 | 2 757 | 645278673 | XP_008244338.1 | 4.50E-183 | PREDICTED:kinesin-3[Prunus mume] |
Cluster-12857.74657 | -8.754 7 | 2 186 | 719976857 | XP_010248668.1 | 1.90E-112 | PREDICTED:uncharacterized protein LOC104591513[Nelumbo nucifera] |
Cluster-12857.45080 | -8.609 6 | 3 854 | 645230669 | XP_008222040.1 | 2.60E-277 | PREDICTED:ankyrin repeat and sterile alpha motif domain-containing protein 1B-like[Prunus mume] |
Cluster-12857.58236 | -8.509 5 | 3 080 | 590658081 | XP_007034748.1 | 1.40E-294 | No lysine kinase 1 isoform 1[Theobroma cacao] |
Cluster-12857.27318 | -8.495 4 | 2 146 | 596174565 | XP_007223177.1 | 5.00E-105 | hypothetical protein PRUPE_ppa009157mg[Prunus persica] |
Cluster-12857.135896 | -8.463 2 | 1 217 | 590566763 | XP_007010326.1 | 4.60E-132 | Catalytic,putative isoform 1[Theobroma cacao] |
Cluster-12857.69484 | -8.311 2 | 2 496 | 567877953 | XP_006431535.1 | 1.20E-38 | hypothetical protein CICLE_v10003979mg,partial[Citrus clementina] |
表7
过表达株系木质部发育相关上调表达基因
基因ID Gene_id | log2倍数变化 log2 fold change | 基因长度 Gene length | NR GI | NR ID | NR评估 NR Evalue | NR说明 NR Description |
---|---|---|---|---|---|---|
Cluster-12857.118958 | 4.8343 | 1483 | 359497539 | XP_003635559.1 | 1.90E-159 | PREDICTED:cellulose synthase-like protein E6 isoform X1[Vitis vinifera] |
Cluster-12857.76168 | 2.3144 | 2522 | 225457723 | XP_002277713.1 | 1.70E-274 | PREDICTED: probable cellulose synthase A catalytic subunit 5 [UDP-forming][Vitis vinifera] |
Cluster-12857.74320 | 3.2946 | 681 | 571534195 | XP_003549490.2 | 5.30E-93 | PREDICTED: probable xyloglucan endotransglucosylase/hydrolase protein 23-like[Glycine max] |
Cluster-12857.86571 | 3.5818 | 375 | 590661748 | XP_007035759.1 | 1.10E-60 | Xyloglucan endotransglucosylase/hydrolase family protein [Theobroma cacao] |
Cluster-12857.94374 | 3.8561 | 1450 | 590683434 | XP_007041599.1 | 7.30E-108 | Fructose-1,6-bisphosphatase, cytosolic[Theobroma cacao] |
Cluster-12857.94375 | 6.9966 | 1771 | 590683434 | XP_007041599.1 | 7.20E-118 | Fructose-1,6-bisphosphatase, cytosolic[Theobroma cacao] |
Cluster-12857.76506 | 2.2768 | 2951 | 567877365 | XP_006431272.1 | 1.20E-266 | hypothetical protein CICLE_v10011622mg[Citrus clementina] |
Cluster-12857.90286 | 5.2815 | 1523 | 645249297 | XP_008230687.1 | 4.90E-155 | PREDICTED:probable galacturonosyltransferase-like 10[Prunus mume] |
Cluster-12857.59289 | 1.0271 | 7112 | 658001427 | XP_008393176.1 | 9.70E-222 | PREDICTED:galactoside 2-alpha-L-fucosyltransferase-like[Malus domestica] |
Cluster-12857.85038 | 2.3215 | 3248 | 694386135 | XP_009368869.1 | 5.40E-151 | PREDICTED:glucan endo-1,3-beta-glucosidase 14-like[Pyrus x bretschneideri] |
Cluster-12857.105697 | 1.9631 | 2202 | 802652705 | XP_012080173.1 | 7.50E-181 | PREDICTED:probable beta-1,3-galactosyltransferase 19[Jatropha curcas] |
Cluster-12857.77676 | 3.1264 | 1772 | 645247636 | XP_008229928.1 | 3.70E-69 | PREDICTED:fasciclin-like arabinogalactan protein 2[Prunus mume] |
Cluster-12857.82137 | 8.2031 | 1984 | 166209291 | ABY85195.1 | 2.50E-268 | p-coumaryl-CoA 3'-hydroxylase[Populus alba×Populus grandidentata] |
Cluster-12857.97128 | 10.632 | 2699 | 720084019 | XP_010243074.1 | 2.60E-159 | PREDICTED:probable phenylalanine—tRNA ligase alpha subunit[Nelumbo nucifera] |
Cluster-12857.41401 | 4.3742 | 1547 | 854930414 | AKN79297.1 | 8.70E-67 | peroxidase 4[Betula platyphylla] |
Cluster-12857.76083 | 9.0528 | 1305 | 470108362 | XP_004290489.1 | 5.90E-141 | PREDICTED:peroxidase 12[Fragaria vesca subsp.vesca] |
Cluster-12857.113235 | 5.9308 | 1124 | 255542656 | XP_002512391.1 | 6.40E-35 | serine-threonine protein kinase,plant-type, putative[Ricinus communis] |
Cluster-8794.3 | 6.5661 | 2512 | 255555051 | XP_002518563.1 | 3.40E-105 | serine-threonine protein kinase, plant-type, putative[Ricinus communis] |
Cluster-12857.119083 | 2.6264 | 1800 | 225452312 | XP_002272486.1 | 3.40E-38 | PREDICTED: serine/threonine-protein kinase HT1[Vitis vinifera] |
Cluster-12857.118054 | 4.7784 | 2738 | 645224059 | XP_008218928.1 | 6.30E-270 | PREDICTED: serine/threonine-protein kinase-like protein CCR4[Prunus mume] |
Cluster-12857.61436 | 5.542 | 320 | 568883219 | XP_006494380.1 | 6.20E-28 | PREDICTED: wall-associated receptor kinase-like 8-like[Citrus sinensis] |
Cluster-12857.80854 | 1.1382 | 3198 | 590591190 | XP_007016945.1 | 1.40E-143 | Leucine-rich repeat protein kinase family protein, putative isoform 1[Theobroma cacao] |
Cluster-12857.46913 | 2.5993 | 1991 | 590640151 | XP_007029875.1 | 2.40E-178 | Leucine-rich repeat containing protein, putative isoform 1[Theobroma cacao] |
表8
抑制表达株系木质部发育相关下调表达基因
基因ID gene_id | log2倍数变化 log2 fold change | 基因长度 Gene Length | NR GI | NR ID | NR评估 NR cvalue | NR说明 NR description |
---|---|---|---|---|---|---|
Cluster-12857.3401 | -3.592 8 | 2 347 | 590679436 | XP_007040580.1 | 1.10E-299 | Cellulose synthase like G3,putative[Theobroma cacao] |
Cluster-12857.79817 | -1.296 6 | 3 177 | 541135587 | AGV22123.1 | 3.90E-239 | endo-1,4-beta-glucanase 1[Betula luminifera] |
Cluster-12857.85041 | -9.912 4 | 4 383 | 449456208 | XP_004145842.1 | 1.60E-126 | PREDICTED:UTP—glucose-1-phosphate uridylyltransferase[Cucumis sativus] |
Cluster-12857.147630 | -6.796 5 | 494 | 566186337 | XP_002314111.2 | 3.00E-21 | UDP-glucoronosyl/UDP-glucosyl transferase family protein[Populus trichocarpa] |
Cluster-12857.88974 | -2.119 6 | 1 519 | 702434862 | XP_010069751.1 | 2.30E-165 | PREDICTED:galactinol synthase 2-like[Eucalyptus grandis] |
Cluster-12857.75094 | -8.027 0 | 5 417 | 470102424 | XP_004287654.1 | 9.40E-92 | PREDICTED: probable polygalacturonase[Fragaria vesca subsp. vesca] |
Cluster-12857.92483 | -7.776 6 | 5 415 | 470102424 | XP_004287654.1 | 9.40E-92 | PREDICTED:probable polygalacturonase[Fragaria vesca subsp. vesca] |
Cluster-12857.154648 | -2.077 7 | 837 | 645235470 | XP_008224286.1 | 1.90E-68 | PREDICTED:non-specific lipid-transfer protein-like protein At2g13820[Prunus mume] |
Cluster-12857.52725 | -7.975 1 | 3 230 | 720011916 | XP_010259705.1 | 7.60E-57 | PREDICTED:probable pectinesterase 29[Nelumbo nucifera] |
Cluster-12857.57875 | -6.393 4 | 1 137 | 571537497 | XP_003550077.2 | 6.10E-126 | PREDICTED:serine/threonine-protein kinase SRK2I-like isoform 1[Glycine max] |
Cluster-12857.105258 | -2.206 6 | 1 465 | 645216354 | XP_008220732.1 | 5.60E-100 | PREDICTED:dehydrodolichyl diphosphate synthase 2[Prunus mume] |
Cluster-12857.122193 | -7.172 0 | 2 231 | 702507890 | XP_010040057.1 | 2.50E-14 | PREDICTED:extensin-like[Eucalyptus grandis] |
Cluster-12857.20627 | -2.917 3 | 2 070 | 225440560 | XP_002276415.1 | 3.20E-258 | PREDICTED:laccase-7[Vitis vinifera] |
1 | Aida M,Ishida T,Fukaki H,et al.Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J].Plant Cell,1997,9(6):841-857. |
2 | Souer E,Van Houwelingen A,Kloos D,et al.The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J].Cell,1996,85(2):159-170. |
3 | 李少锋.林木木材形成机制及材性改良研究进展[J].温带林业研究,2019,2(2):40-47. |
Li S F.Wood formation mechanism and properties improvement in forest trees[J].Journal of Temperate Forestry Research,2019,2(2):40-47. | |
4 | 姜春妹.杨树油菜素内酯受体基因PtBRI1.2促进木质发育中的功能研究[D].北京:中国科学院大学,2016. |
Jiang C M.The function of poplar brassinolide receptor gene PtBRI1.2 in promoting lignin development[D].Beijing:University of Chinese Academy of Sciences,2016. | |
5 | 李慧,郭晓蕊,刘雅琳,等.木材形成过程中次生壁沉积和细胞程序性死亡的分子调控机制[J].中国科学:生命科学,2020,50(2):123-135. |
Li H,Guo X R,Liu Y L,et al.The molecular mechanism in secondary wall deposition and programmed cell death of wood formation[J].Scientia Sinica Vitae,2020,50(2):123-135. | |
6 | 邓丽萍,任素红,吕建雄,等.树木木质部细胞凋亡及心材形成机理研究进展[J].林产工业,2019,46(6):1-4. |
Deng L P,Ren S H,Lv J X,et al.Research status on apoptosis in xylem cell of trees and formation mechanism of heartwood[J].China Forest Products Industry,2019,46(6):1-4. | |
7 | Mitsuda N,Iwase A,Yamamoto H,et al.NAC transcription factors,NST1 and NST3,are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J].Plant Cell,2007,19(1):270-280. |
8 | 丁忆然.甘蓝型油菜种皮木质素合成相关基因的差异表达分析[D].重庆:西南大学,2019. |
Ding Y R.Differential expression analysis of lignin synthesis related genes in the seed coat of Brassica napus L.[D].Chongqing:Southwest University,2019. | |
9 | Zhong R Q,Lee C,Ye Z H.Functional characterization of poplar wood-associated NAC domain transcription factors[J].Plant Physiology,2010,152(2):1044-1055. |
10 | Hu P,Zhang K M,Yang C P.BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis[J].Plant Physiology,2019,179(2):700–717. |
11 | Wei Z G,Zhang K X,Yang C P,et al.Genetic linkage maps of Betula platyphylla Suk. based on ISSR and AFLP markers[J].Plant Molecular Biology Reporter,2010,28(1):169. |
12 | Wang C,Zhang N,Gao C Q,et al.Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in Betula platyphylla[J].PLoS One,2014,9(2):e87566. |
13 | Schomburg D,Stephan D.UTP-glucose-1-phosphate uridylyltransferase[M].//Schomburg D,Stephan D.Enzyme handbook.Berlin Heidelberg:Springer,1997:163-180. |
14 | Sandhoff K,Van Echten G,Schröder M,et al.Metabolism of glycolipids:the role of glycolipid-binding proteins in the function and pathobiochemistry of lysosomes[J].Biochemical Society Transactions,1992,20(3):695-699. |
15 | Tanaka K,Murata K,Yamazaki M,et al.Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J].Plant Physiology,2003,133(1):73-83. |
16 | Yu L L,Li Q,Zhu Y Y,et al.An auxin-induced β-type endo-1,4-β-glucanase in poplar is involved in cell expansion and lateral root formation[J].Planta,2018,247(5):1149-1161. |
[1] | 陈柄华, 张杰, 刘桂丰, 李思婷, 高元科, 李慧玉, 李天芳. 白桦半同胞家系纸浆材优良家系选择及选择方法评价[J]. 植物研究, 2023, 43(5): 690-699. |
[2] | 王景哲, 牛朝奎, 梁馨元, 申晨静, 尹静. 水杨酸在白桦苗期抵御盐碱胁迫中的调控作用[J]. 植物研究, 2023, 43(3): 379-387. |
[3] | 杜金霞, 申婷婷, 王浩然, 林一萍, 李慧玉, 张连飞. 白桦BpSPL9基因抑制表达载体的构建及遗传转化研究[J]. 植物研究, 2023, 43(1): 30-35. |
[4] | 陈坤, 方功桂, 穆怀志, 姜静. 白桦BpPIN3基因启动子序列及应答特性分析[J]. 植物研究, 2022, 42(4): 592-601. |
[5] | 张玉琦, 苏欣, 尤志强, 富金博, 詹亚光, 尹静. 不同激素处理对白桦幼树萌条及三萜合成的影响[J]. 植物研究, 2022, 42(2): 289-298. |
[6] | 杨蕴力, 渠畅, 王阳, 刘桂丰, 姜静. 白桦BpPIN5基因启动子组织定位及外源激素应答分析[J]. 植物研究, 2022, 42(1): 104-111. |
[7] | 马庆, 李芳蕊, 刘桂丰, 李慧玉. 航天诱变白桦生长性状分析[J]. 植物研究, 2021, 41(4): 540-546. |
[8] | 吕东林, 李腾, 郭译文, 姜静, 黄海娇. 转基因白桦杂交子代种子活力及外源基因遗传规律分析[J]. 植物研究, 2021, 41(4): 564-572. |
[9] | 刘佳欣, 刘慧子, 石晶静, 于颖, 王超. 白桦MYB基因响应激素及盐旱处理的表达研究[J]. 植物研究, 2020, 40(5): 743-750. |
[10] | 王万奇, 齐婉竹, 赵秋爽, 曾栋, 刘轶, 付鹏跃, 曲冠证, 赵曦阳. 白桦BpJMJ18基因启动子克隆及表达分析[J]. 植物研究, 2020, 40(5): 751-759. |
[11] | 姜骋, 张曦, 田晴, 李莉. 白桦BpbHLH112基因克隆及其启动子表达特性分析[J]. 植物研究, 2020, 40(4): 583-592. |
[12] | 李影, 李林夕, 张玉琦, 王宇, 詹亚光, 尹静. 一种高效的白桦树皮中白桦脂醇分离、纯化方法[J]. 植物研究, 2020, 40(3): 468-475. |
[13] | 孙硕, 王秀伟, 杜梦甜, 李京航, 王博一, 刘桂丰. 不同种源白桦根CO2释放通量地点和根径级间的差异[J]. 植物研究, 2020, 40(3): 476-480. |
[14] | 秦琳琳, 张曦, 姜骋, 李莉. 白桦BpZFP4基因启动子克隆和逆境响应元件功能分析[J]. 植物研究, 2019, 39(6): 917-926. |
[15] | 颜斌, 武丹阳, 李慧玉. 白桦BpBEE2基因的遗传转化及抗逆性分析[J]. 植物研究, 2019, 39(2): 287-293. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||