植物研究 ›› 2022, Vol. 42 ›› Issue (2): 174-183.doi: 10.7525/j.issn.1673-5102.2022.02.002
收稿日期:
2021-04-22
出版日期:
2022-03-20
发布日期:
2022-02-22
通讯作者:
陈昕
E-mail:chenxinzhou@hotmail.com
作者简介:
朱凯琳(1996—),女,硕士研究生,主要从事植物学研究。
基金资助:
Kailin Zhu1,2, Jiabao Li1,2, Xin Chen1,2()
Received:
2021-04-22
Online:
2022-03-20
Published:
2022-02-22
Contact:
Xin Chen
E-mail:chenxinzhou@hotmail.com
About author:
Zhu Kailin(1996—),female,master candidate,mainly engaged in research of botany.
Supported by:
摘要:
采用石蜡切片法对四川省龙苍沟国家森林公园内7种花楸属(Sorbus)植物的叶解剖特征进行研究,探究其结构特征与生境的相关性。结果显示:7种植物的叶片均为典型的背腹叶;叶片厚度介于108.16~208.21 μm,种间差异极显著(P<0.01);上表皮厚度均大于下表皮厚度,且复叶物种的下表皮细胞均有乳突;栅栏组织由1~2层细胞构成,仅多对西康花楸(S. prattii var. aestivalis)的栅海比(栅栏组织与海绵组织的厚度比)为1.93,其余6种植物的栅海比均小于1;中脉维管束均呈心型,为典型的外韧型维管束,种间中脉突起度存在极显著差异(P<0.01)。各解剖结构中,上、下表皮可塑性最大,在生境中具有较强的潜在适应能力;中脉可塑性最小,整体结构较为稳定。栅栏组织、海绵组织和中脉组织是7种植物中种间差异最大的解剖结构。叶解剖结构与生境因子的相关性分析表明,栅栏组织厚度、栅海比和紧密度与年降水量、最暖季降水和海拔正相关(P<0.05),与季节性温差负相关(P<0.05);中脉直径和突起度与季节性温差呈正相关(P<0.01),与年降水量、最暖季降水和海拔正相关负相关(P<0.05)。叶解剖结构性状的适应性变化,体现了7种花楸属植物在龙苍沟国家森林公园的生存策略。
中图分类号:
朱凯琳, 李嘉宝, 陈昕. 龙苍沟国家森林公园7种花楸属植物的叶解剖特征及其环境适应性[J]. 植物研究, 2022, 42(2): 174-183.
Kailin Zhu, Jiabao Li, Xin Chen. Leaf Anatomical Characteristics and Environmental Adaptability of Seven Sorbus Species at Longcanggou National Forest Park[J]. Bulletin of Botanical Research, 2022, 42(2): 174-183.
表1
样本来源
种名 Species | 经度(E) Longitude /° | 纬度(N) Latitude /° | 海拔 Altitude /m |
---|---|---|---|
毛背花楸 S. aronioides | 102.889 3 | 29.575 1 | 2 070 |
102.889 9 | 29.575 2 | 2 111 | |
102.889 4 | 29.575 4 | 2 107 | |
江南花楸 S. hemsleyi | 102.867 8 | 29.572 6 | 2 128 |
102.893 7 | 29.571 0 | 2 134 | |
102.894 8 | 29.569 7 | 2 141 | |
大果花楸 S. megalocarpa | 102.841 2 | 29.605 9 | 1 364 |
102.895 2 | 29.615 3 | 1 509 | |
102.896 9 | 29.611 7 | 1 549 | |
泡吹叶花楸 S. meliosmifolia | 102.821 0 | 29.593 8 | 1 448 |
102.896 8 | 29.611 5 | 1 544 | |
102.896 7 | 29.611 6 | 1 548 | |
多对西康花楸 S. prattii var. aestivalis | 102.863 5 | 29.570 1 | 2 185 |
102.863 4 | 29.569 9 | 2 186 | |
晚绣花楸 S. sargentiana | 102.869 4 | 29.573 4 | 2 127 |
102.863 7 | 29.570 6 | 2 180 | |
102.862 8 | 29.568 1 | 2 222 | |
梯叶花楸 S. scalaris | 102.889 3 | 29.575 0 | 2 068 |
102.894 7 | 29.569 8 | 2 137 | |
102.863 9 | 29.571 1 | 2 162 |
表2
气候变量
气候因子类型 Types of climatic factors | 气候变量 Climatic variables |
---|---|
温度因子 Temperature factors | 年均温Annual mean temperature (Bio1) |
平均月温差 Mean diurnal tange (Bio2) | |
等温性 Isothermality (Bio3) | |
季节性温差** Temperature seasonality (Bio4) | |
最暖月最高温 Max temperature of warmest month (Bio5) | |
最冷月最低温 Min temperature of coldest month (Bio6) | |
年温差 Temperature annual range [standard deviation] (Bio7) | |
最暖月均温 Mean temperature of warmest quarter (Bio10) | |
最冷月均温 Mean temperature of coldest quarter (Bio11) | |
降水因子 Precipitation factors | 年降水量** Annual precipitation (Bio12) |
最湿润月降水 Precipitation of wettest month (Bio13) | |
最干旱月降水 Precipitation of driest month (Bio14) | |
最湿润季降水 Precipitation of wettest quarter (Bio16) | |
最干旱季降水 Precipitation of driest quarter (Bio17) | |
季节性降水变化 Precipitation seasonality (Bio15) | |
水热综合因子 Hydrothermal factors | 最湿季均温 Mean temperature of wettest quarter (Bio8) |
最干季均温 Mean temperature of driest quarter (Bio9) | |
最暖季降水** Precipitation of warmest quarter (Bio18) | |
最冷季降水 Precipitation of coldest quarter (Bio19) |
表3
花楸属植物的叶片解剖结构参数
种名 Species | 叶片厚度 Leaf thickness /μm | 上表皮厚度 Upper epidermis thickness /μm | 下表皮厚度 Lower epidermis thickness/μm | 栅栏组织厚度 Palisade parenchyma thickness /μm | 海绵组织厚度 Spongy parenchyma thickness /μm | 栅海比 P/S | 紧密度 Cell tense ratio | 疏松度 Sponge ratio | 中脉直径 Diameter of midrib /μm | 中脉突起度 Midrib protuberant degree |
---|---|---|---|---|---|---|---|---|---|---|
毛背花楸 S. aronioides | 208.21±19.24A | 24.34±5.86AB | 13.54±2.33C | 77.76±7.97A | 91.06±16.33A | 0.88±0.19BC | 37.62±4.80B | 753.08±29.23B | 3.65±0.42C | |
江南花楸 S. hemsleyi | 168.85±21.80C | 15.11±2.80D | 9.08±1.83E | 64.52±9.08C | 85.29±16.25AB | 0.77±0.12C | 38.32±3.85B | 605.45±88.81C | 3.65±0.77C | |
大果花楸 S. megalocarpa | 108.16±5.97F | 18.66±2.96C | 12.18±2.69CD | 36.24±2.55F | 43.78±5.99DE | 0.84±0.12BC | 33.56±2.57C | 1 157.13±8.22A | 10.73±0.58A | |
泡吹叶花楸 S. meliosmifolia | 163.06±10.17C | 18.73±4.50C | 17.73±4.71B | 43.15±5.32E | 79.93±13.49BC | 0.56±0.12D | 26.57±3.71D | 500.18±46.07E | 3.07±0.29D | |
多对西康花楸 S. prattii var. aestivalis | 138.48±7.27D | 22.17±5.50B | 10.03±2.81DE | 71.88±6.23B | 38.19±5.21E | 1.93±0.40A | 52.07±5.51A | 267.87±6.24F | 1.94±0.10F | |
晚绣花楸 S. sargentiana | 126.27±8.36E | 16.54±2.55CD | 13.73±2.28C | 48.68±6.80D | 51.48±6.77D | 0.97±0.24B | 38.74±6.36B | 554.28±66.39D | 4.42±0.69B | |
梯叶花楸 S. scalaris | 188.58±15.28B | 26.70±8.21A | 21.52±5.90A | 60.93±10.86C | 75.16±10.58C | 0.83±0.20BC | 32.40±5.51C | 470.52±13.10E | 2.51±0.22E |
表4
花楸属植物叶解剖结构的变异系数和可塑性指数
毛背花楸 S. aronioides | 江南花楸 S. hemsleyi | 大果花楸 S. megalocarpa | 泡吹叶花楸 S. meliosmifolia | 多对西康花楸 S. prattii var. aestivalis | 晚绣花楸 S. sargentiana | 梯叶花楸 S. scalaris | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CV% | PI | CV /% | PI | CV% | PI | CV% | PI | CV% | PI | CV% | PI | CV% | PI | |
LT | 9.24 | 0.31 | 12.91 | 0.38 | 5.52 | 0.20 | 6.24 | 0.19 | 5.25 | 0.19 | 6.62 | 0.23 | 8.11 | 0.26 |
UET | 24.08 | 0.59 | 18.5 | 0.49 | 15.84 | 0.45 | 24.00 | 0.58 | 24.83 | 0.64 | 15.42 | 0.44 | 30.74 | 0.70 |
LET | 17.19 | 0.55 | 20.16 | 0.61 | 22.13 | 0.59 | 26.58 | 0.65 | 28.00 | 0.64 | 16.62 | 0.56 | 27.40 | 0.62 |
PT | 10.26 | 0.38 | 14.07 | 0.36 | 7.03 | 0.23 | 12.32 | 0.43 | 8.67 | 0.30 | 13.96 | 0.43 | 17.83 | 0.56 |
ST | 17.93 | 0.51 | 19.05 | 0.58 | 13.67 | 0.4 | 16.88 | 0.44 | 13.65 | 0.40 | 13.16 | 0.38 | 14.07 | 0.39 |
P/S | 21.91 | 0.56 | 15.63 | 0.48 | 14.68 | 0.43 | 21.84 | 0.52 | 20.79 | 0.53 | 25.18 | 0.64 | 24.52 | 0.66 |
CTR | 12.77 | 0.43 | 10.05 | 0.32 | 7.65 | 0.25 | 13.96 | 0.44 | 10.59 | 0.34 | 16.40 | 0.49 | 16.99 | 0.54 |
SR | 15.19 | 0.45 | 12.16 | 0.46 | 11.46 | 0.33 | 16.17 | 0.46 | 13.71 | 0.40 | 13.26 | 0.40 | 16.11 | 0.45 |
DM | 3.88 | 0.12 | 14.67 | 0.33 | 0.71 | 0.02 | 9.21 | 0.25 | 2.33 | 0.08 | 11.98 | 0.25 | 2.78 | 0.08 |
MPD | 11.61 | 0.34 | 21.09 | 0.55 | 5.37 | 0.21 | 9.55 | 0.33 | 5.09 | 0.18 | 15.64 | 0.41 | 8.77 | 0.29 |
均值 Mean | 14.41 | 0.42 | 15.83 | 0.46 | 10.41 | 0.31 | 15.68 | 0.43 | 13.29 | 0.37 | 14.82 | 0.42 | 16.73 | 0.46 |
表5
叶解剖结构的相关性分析
LT | UET | LET | PT | ST | P/S | CTR | SR | DM | MPD | |
---|---|---|---|---|---|---|---|---|---|---|
LT | 1 | |||||||||
UET | 0.575** | 1 | ||||||||
LET | 0.361 | 0.545* | 1 | |||||||
PT | 0.727** | 0.486* | -0.130 | 1 | ||||||
ST | 0.858** | 0.213 | 0.251 | 0.426 | 1 | |||||
P/S | -0.229 | 0.196 | -0.368 | 0.418 | -0.599** | 1 | ||||
CTR | -0.143 | 0.033 | -0.581** | 0.571** | -0.421 | 0.907** | 1 | |||
SR | 0.301 | -0.337 | 0.071 | -0.183 | 0.743** | -0.860** | -0.648** | 1 | ||
DM | -0.334 | -0.180 | -0.236 | -0.421 | -0.148 | -0.359 | -0.296 | 0.161 | 1 | |
MPD | -0.644** | -0.301 | -0.276 | -0.625** | -0.458* | -0.195 | -0.201 | -0.013 | 0.930** | 1 |
表6
叶解剖结构指标在3个主成分中的载荷系数
变量 Variables | 第一主成分 Principal component 1 | 第二主成分 Principal component 2 | 第三主成分 Principal component 3 |
---|---|---|---|
叶片厚度 Leaf thickness | 0.950 | -0.015 | -0.077 |
上表皮厚度 Upper epidermis thickness | 0.555 | 0.288 | 0.609 |
下表皮厚度 Lower epidermis thickness | 0.494 | -0.294 | 0.769 |
栅栏组织厚度 Palisade parenchyma thickness | 0.645 | 0.599 | -0.292 |
海绵组织厚度 Spongy parenchyma thickness | 0.829 | -0.424 | -0.325 |
栅海比 P/S | -0.222 | 0.966 | 0.044 |
紧密度 Cell tense ratio | -0.174 | 0.917 | -0.298 |
疏松度 Sponge ratio | 0.319 | -0.806 | -0.449 |
中脉直径 Diameter of midrib | -0.554 | -0.505 | 0.005 |
中脉突起度 Midrib protuberant degree | -0.797 | -0.397 | 0.104 |
标准偏差 Standard deviation | 1.9190 | 1.8821 | 1.2092 |
方差比 Proportion of variance /% | 36.83 | 35.42 | 14.62 |
累计贡献率 Cumulative proportion /% | 36.83 | 72.25 | 86.87 |
表7
叶片解剖结构指标与环境因子的相关性
变量 Variables | 季节性温差 Temperature seasonality | 年降水量 Annual precipitation | 最暖季降水 Precipitation of warmest quarter | 海拔 Altitude |
---|---|---|---|---|
叶片厚度 Leaf thickness | -0.184 | 0.225 | 0.222 | 0.378 |
上表皮厚度 Upper epidermis thickness | -0.103 | 0.105 | 0.101 | 0.176 |
下表皮厚度 Lower epidermis thickness | 0.155 | -0.179 | -0.179 | -0.134 |
栅栏组织厚度 Palisade parenchyma thickness | -0.538* | 0.600** | 0.597** | 0.717** |
海绵组织厚度 Spongy parenchyma thickness | -0.013 | 0.006 | 0.003 | 0.136 |
栅海比 P/S | -0.455* | 0.478* | 0.478* | 0.429 |
紧密度 Cell tense ratio | -0.605** | 0.638** | 0.638** | 0.613** |
疏松度 Sponge ratio | 0.222 | -0.290 | -0.293 | -0.245 |
中脉直径 Diameter of midrib | 0.607** | -0.576** | -0.576** | -0.552* |
中脉突起度 Midrib protuberant degree | 0.575** | -0.569** | -0.567** | -0.611** |
1 | Lu L T,Spongberg S A.Flora of China(Vol.9):Sorbus Linnaeus[M].//Wu Z Y,Raven P H,Hong D Y.Beijing:Science Press;St.Louis:Missouri Botanical Garden Press,2003:144-170. |
2 | Phipps J B,Robertson K R,Smith P G,et al.A checklist of the subfamily Maloideae(Rosaceae)[J].Canadian Journal of Botany,1990,68(10):2209-2269. |
3 | 俞德浚,关克俭.中国蔷薇科植物分类之研究(一)[J].植物分类学报,1963,8(3):202-236. |
Yu D J,Guan K J.Taxa nova Rosacearum Sinicarum(I)[J].Acta Phytotaxonomica Sinica,1963,8(3):202-236. | |
4 | Aldasoro J J,Aedo C,Garmendia F M,et al.Revision of Sorbus Subgenera Aria and Torminaria(Rosaceae-Maloideae)[J].Systematic Botany Monographs,2004,69:1-148. |
5 | Mcallister H.The Genus Sorbus-Mountain Ash and other Rowans[M].London:Royal Botanical Gardens,Kew,2005. |
6 | 中国科学院中国植物志委员会.中国植物志(第36卷)[M].北京:科学出版社,1974:283-344. |
Editorial Board of Chinese Botany,Chinese Academy of Sciences.Flora of China(Vol.36)[M].Beijing:Science Press,1974:283-344. | |
7 | Aldasoro J J,Aedo C,Navarro C,et al.The genus Sorbus(Maloideae,Rosaceae) in Europe and in North Africa:morphological analysis and systematics[J].Systematic Botany,1998,23(2):189-212. |
8 | Castro-Díez P,Puyravaud J P,Cornelissen J H C.Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J].Oecologia,2000,124(4):476-486. |
9 | Zhong M Y,Wang J X,Liu K S,et al.Leaf morphology shift of three dominant species along altitudinal gradient in an alpine meadow of the Qinghai-Tibetan Plateau[J].Polish Journal of Ecology,2014,62(4):639-648. |
10 | 李海霞, 李正华, 邢亚娟.大兴安岭16种功能性植物叶片营养成分分析[J].森林工程,2019,35(1): 29-35,86. |
Li H X,Li Z H,Xing Y J.Analysis on nutrients component of sixteen functional plants leaves in Daxing’an Mountains Full text replacement[J].Forest Engineering,2019,35(1):29-35. | |
11 | 袁永明,彭泽祥,陈家瑞.豆科黄华族植物叶解剖特征及其系统学与生态学意义[J].植物学报,1991,33(11):840-847. |
Yuan Y M,Peng Z X,Chen J R.The systematic and ecological significance of anatomical characters of leaves in the tribe Thermopsideae(Fabaceae)[J].Acta Botanica Sinica,1991,33(11):840-847. | |
12 | Corrêa M M,De Araújo M G P,Scudeller V V.Comparative leaf anatomy of twenty species of Chrysobalanaceae R.Br[J].Flora,2018,249:60-66. |
13 | Vaz P P,Alves F M,De Oliveira Arruda R D C.Systematic implications of leaf anatomy in the Neotropical Mezilaurus clade(Lauraceae)[J].Botanical Journal of the Linnean Society,2019,189(2):186-200. |
14 | Ornellas T,Heiden G,Luna B N,et al.Comparative leaf anatomy of Baccharis(Asteraceae) from high-altitude grasslands in Brazil:taxonomic and ecological implications[J].Botany,2019,97(11):615-626. |
15 | Neto I L D C,Martins F M,Martins M L L,et al.Comparative leaf anatomy of wild Manihot Mill. species(Euphorbiaceae) from Chapada Diamantina,Bahia,Brazil[J].Nordic Journal of Botany,2017,35(2):207-219. |
16 | 钟悦鸣,董芳宇,王文娟,等.不同生境胡杨叶片解剖特征及其适应可塑性[J].北京林业大学学报,2017,39(10):53-61. |
Zhong Y M,Dong F Y,Wang W J,et al.Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J].Journal of Beijing Forestry University,2017,39(10):53-61. | |
17 | 郭文文,卓么草,方江平,等.藏东南色季拉山薄毛海绵杜鹃叶解剖结构特征与环境适应性[J].西北植物学报,2020,40(5):811-818. |
Guo W W,Zhuo M C,Fang J P,et al.Anatomical characteristics and environmental adaptability of Rhododendron aganniphum var. schizopeplum leaf in Sejila Mountain,southeastern Tibet[J].Acta Botanica Boreali-Occidentalia Sinica,2020,40(5):811-818. | |
18 | 刘梦颖,刘光立,康永祥,等.高山植物全缘叶绿绒蒿叶片形态及解剖结构对海拔的响应[J].生态学杂志,2018,37(1):35-42. |
Liu M Y,Liu G L,Kang Y X,et al.Responses of leaf morphological and anatomical structure to elevation in an alpine plant Meconopsis integrifolia[J].Chinese Journal of Ecology,2018,37(1):35-42. | |
19 | Ďurkovič J,Kardošová M,Čaňová I,et al.Leaf traits in parental and hybrid species of Sorbus(Rosaceae)[J].American Journal of Botany,2012,99(9):1489-1500. |
20 | 何冬梅,刘庆,林波,等.人工针叶林林下11种植物叶片解剖特征对不同生境的适应性[J].生态学报,2008,28(10):4739-4749. |
He D M,Liu Q,Lin B,et al.Adaptation of leaf anatomical characteristics of eleven understory species to different environments in coniferous plantations[J].Acta Ecologica Sinica,2008,28(10):4739-4749. | |
21 | 滕红梅,肖兵,崔克勇,等.8种野生观赏树木叶的解剖结构及抗逆性比较[J].安徽农业科学,2016,44(29):3-6. |
Teng H M,Xiao B,Cui K Y,et al.Comparison of anatomical structure and stress resistance of leaves of eight kinds of wild ornamental trees[J].Journal of Anhui Agricultural Sciences,2016,44(29):3-6. | |
22 | 刘艳芳,张艳茹,陈红.贡嘎山阔叶木本植物叶片解剖结构及其生存策略分析[J].西南大学学报:自然科学版,2015,37(5):66-72. |
Liu Y F,Zhang Y R,Chen H.An analysis of the foliar anatomical structures of broadleaved woody plants in the Gongga Mountains and their survival strategy[J].Journal of Southwest University:Natural Science Edition,2015,37(5):66-72. | |
23 | 叶激华,崔大练,马玉心.不同水分胁迫下花楸叶片解剖结构探究[J].通化师范学院学报,2009,30(4):69-71. |
Ye J H,Cui D L,Ma Y X.Anatomical structure of leaves of Sorbus pohuashanensis under different water stress[J].Journal of Tonghua Normal University,2009,30(4):69-71. | |
24 | 陈昕,张红星,张振英.黄山花楸幼苗对遮荫的形态、解剖和光合生理响应[J].东北林业大学学报,2012,40(10):24-27,33. |
Chen X,Zhang H X,Zhang Z Y.Morphological,anatomical,photosynthetic and physiological responses of Sorbus amabilis seedlings under different shade environments[J].Journal of Northeast Forestry University,2012,40(10):24-27,33. | |
25 | 陈昕,徐宜凤,张振英.干旱胁迫下石灰花楸幼苗叶片的解剖结构和光合生理响应[J].西北植物学报,2012,32(1):111-116. |
Chen X,Xu Y F,Zhang Z Y.Leaf anatomical structure and photosynthetic physiology responses of Sorbus folgneri seedlings under drought stress[J].Acta Botanica Boreali-Occidentalia Sinica,2012,32(1):111-116. | |
26 | Valladares F,Wright S J,Lasso E,et al.Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J].Ecology,2000,81(7):1925-1936. |
27 | 武晓宇,董世魁,刘世梁,等.基于MaxEnt模型的三江源区草地濒危保护植物热点区识别[J].生物多样性,2018,26(2):138-148. |
Wu X Y,Dong S K,Liu S L,et al.Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model[J].Biodiversity Science,2018,26(2):138-148. | |
28 | 朱弘,朱淑霞,李涌福,等.尾叶樱桃天然种群叶表型性状变异研究[J].植物生态学报,2018,42(12):1168-1178. |
Zhu H,Zhu S X,Li Y F,et al.Leaf phenotypic variation in natural populations of Cerasus dielsiana[J].Chinese Journal of Plant Ecology,2018,42(12):1168-1178. | |
29 | 陆双飞,陈禹衡,周斯怡,等.西南地区松属乔木对气候变化的响应[J].森林与环境学报,2020,40(5):466-477. |
Lu S F,Chen Y H,Zhou S Y,et al.Responses of Pinus species to climate change in southwestern China[J].Journal of Forest and Environment,2020,40(5):466-477. | |
30 | Krivoruchko O V,Gamulya O V.The anatomical study of Sorbus aucuparia and Sorbus domestica leaves[J].News of Pharmacy,2013,4(76):33-36. |
31 | 郗连连.中国花楸属复叶组植物叶表皮微形态特征及其分类学意义[D].南京:南京林业大学,2020. |
Xi L L.Leaf epidermal micromorphology of Sorbus Section Sorbus and its taxonomic significance[D].Nanjing:Nanjing Forestry University,2020. | |
32 | 李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005,22(S1):118-127. |
Li F L,Bao W K.Responses of the morphological and anatomical structure of the plant leaf to environmental change[J].Chinese Bulletin of Botany,2005,22(S1):118-127. | |
33 | 陈旭,刘洪凯,王强,等.鲁东丘陵同质生境中11个树种叶解剖学特性比较[J].应用与环境生物学报,2019,25(3):655-664. |
Chen X,Liu H K,Wang Q,et al.Leaf anatomical characteristics of 11 tree species in the homogeneous habitats of eastern Shandong province hills[J].Chinese Journal of Applied & Environmental Biology,2019,25(3):655-664. | |
34 | Maréchaux I,Bartlett M K,Gaucher P,et al.Causes of variation in leaf-level drought tolerance within an Amazonian forest[J].Journal of Plant Hydraulics,2016,3:e004. |
35 | Wang X,Liu J M,Rui X,et al.Biogeographic divergence in leaf traits of Sapindus mukorossi and Sapindus delavayi and its relation to climate[J/OL].Journal of Forestry Research,2020-09-12.. |
36 | Matesanz S,Gianoli E,Valladares F.Global change and the evolution of phenotypic plasticity in plants[J].Annals of the New York Academy of Sciences,2010,1206(1):35-55. |
37 | Chitwood D H,Sinha N R.Evolutionary and environmental forces sculpting leaf development[J].Current Biology,2016,26(7):297-306. |
38 | 刘世彪,陈菁,胡正海.7种番荔枝果树的叶片结构及其与抗寒性关系研究[J].果树学报,2004,21(3):241-246. |
Liu S B,Chen Q,Hu Z H.Studies on the relationship between leaf structure and cold resistance of 7 species of Annonaceae fruit trees[J].Journal of Fruit Science,2004,21(3):241-246. | |
39 | 张腾驹,陈小红,刘静,等.四川省不同天然种群珙桐叶片解剖结构与其耐热性的关系[J].植物研究,2019,39(2):208-221. |
Zhang T J,Chen X H,Liu J,et al.Relationship between anatomical structures and heat resistance of Davidia involucrata natural populations in Sichuan Province[J].Bulletin of Botanical Research,2019,39(2):208-221. | |
40 | 张鹏,孙阳,虞木奎,等.海岸梯度上黑松针叶形态与解剖结构性状的变化规律[J].植物研究,2018,38(3):343-348. |
Zhang P,Sun Y,Yu M K,et al.Variation in needle morphology and anatomy of Pinus thunbergii along coastal-inland gradient[J].Bulletin of Botanical Research,2018,38(3):343-348. | |
41 | 李全发,王宝娟,安丽华,等.青藏高原草地植物叶解剖特征[J].生态学报,2013,33(7):2062-2070. |
Li Q F,Wang B J,An L H,et al.Leaf anatomical characteristics of the plants of grasslands in the Tibetan Plateau[J].Acta Ecologica Sinica,2013,33(7):2062-2070. |
[1] | 冮慧欣, 王嘉琪, 黄春岩, 王秀伟. 8种绿化树种光合特性及叶片解剖结构比较[J]. 植物研究, 2019, 39(1): 10-16. |
[2] | 张东来, 张玲, 葛文志. 不同光环境下胡桃楸幼苗的形态可塑性及其响应研究[J]. 植物研究, 2017, 37(5): 658-663. |
[3] | 康晓珊;潘伯荣*;张永智;段士民;师玮;. 中国特有植物艾比湖沙拐枣(Calligonum ebi-nuricum)居群内果实性状的变异[J]. 植物研究, 2009, 29(6): 747-752. |
[4] | 刘秀梅;王雷宏;李小翌*. 花楸属一新种——天堂花楸[J]. 植物研究, 2009, 29(2): 131-133. |
[5] | 李瑞利;石福臣*;张秀玲;诸 明. 天津沿海滩涂互花米草种群生殖分株数量特征及生殖分配研究[J]. 植物研究, 2007, 27(1): 99-106. |
[6] | 史刚荣;李 慧. 淮北相山恢复演替群落优势树种的水分生理生态研究[J]. 植物研究, 2006, 26(6): 722-727. |
[7] | 史刚荣. 木槿的发育可塑性及种下分类研究[J]. 植物研究, 2003, 23(3): 340-344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||