Bulletin of Botanical Research ›› 2025, Vol. 45 ›› Issue (1): 22-33.doi: 10.7525/j.issn.1673-5102.2025.01.004
• Original Paper • Previous Articles Next Articles
Jun ZHI1, Wenbiao DUAN1(), Ming GAO1, Wei HU2, Meng LI2, Shuren WANG1
Received:
2024-11-12
Online:
2025-01-20
Published:
2025-01-23
Contact:
Wenbiao DUAN
E-mail:dwbiao88@163.com
CLC Number:
Jun ZHI, Wenbiao DUAN, Ming GAO, Wei HU, Meng LI, Shuren WANG. Impact of Land Use Patterns on the Structure and Function of Soil Bacterial Communities[J]. Bulletin of Botanical Research, 2025, 45(1): 22-33.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2025.01.004
Table 1
Effects of land use patterns on soil physicochemical properties
处理 Treatment | 土壤容重 Soil bulk density/ (g⋅cm-3) | 土壤含水量 Soil moisture content/% | 酸碱度 pH | 土壤有机碳 Soil organic carbon/ (g⋅kg-1) | 全氮 Total nitrogen /(g⋅kg-1) | 全磷 Total phosphorus /(g⋅kg-1) | 全钾 Total potassium /(g⋅kg-1) |
---|---|---|---|---|---|---|---|
农田-7月 | 1.34±0.06a | 27.37±0.69b | 7.51±0.03b | 14.59±0.34b | 1.77±0.06b | 1.61±0.03a | 21.86±0.23a |
草地-7月 | 1.22±0.03b | 29.51±0.64a | 7.58±0.07a | 16.83±0.27a | 2.03±0.07a | 0.65±0.01b | 20.37±0.21b |
林地-7月 | 1.18±0.06b | 30.48±0.66a | 7.60±0.05a | 17.50±0.10a | 2.18±0.07a | 0.17±0.01c | 20.67±0.31b |
农田-8月 | 1.29±0.02a | 27.21±0.80b | 7.52±0.08b | 14.98±0.09c | 1.78±0.06b | 1.64±0.04a | 21.73±0.23a |
草地-8月 | 1.21±0.01b | 30.05±0.89a | 7.57±0.08a | 16.64±0.28b | 1.91±0.28a | 0.65±0.01b | 20.87±0.61b |
林地-8月 | 1.18±0.04b | 30.41±0.57a | 7.59±0.04a | 18.37±0.72a | 2.18±0.07a | 0.16±0.01c | 20.67±0.31b |
农田-9月 | 1.32±0.03a | 27.31±0.78b | 7.52±0.04b | 14.77±0.39c | 1.73±0.04b | 1.64±0.01a | 21.93±0.31a |
草地-9月 | 1.29±0.11b | 30.56±0.45a | 7.58±0.09a | 16.19±0.61b | 1.92±0.33a | 0.64±0.01b | 20.43±0.29b |
林地-9月 | 1.23±0.07b | 31.12±0.41a | 7.62±0.04a | 17.49±0.08a | 2.14±0.05a | 0.16±0.01c | 20.63±0.25b |
Fig.2
Analysis of α diversity index(A) and principal coordinate(PCoA) of different land use patterns(B)Different lowercase letters indicated significant differences between different treatments in the same sampling month (P<0.05). Among them, C, G, and F represented cropland, grassland, and forest land, respectively; the same as below.
Fig.3
Bacterial co-occurrence network of different land use patternsThe green edges in the figure represented positive correlations, and the red edges indicate negative correlations. Nodes represented different operational taxonomic units (OTUs), node sizes were proportional to the average degree, node colors were divided by modules, different rows represented different land use patterns, and different columns represented different sampling months.
Table 2
Topological properties of bacterial co-occurrence network
处理 Treatment | 节点数量 Number of nodes | 边数量 Number of edges | 平均度 Average degree | 正相关 Positive correlation/% | 模块化指数 Modularity | 聚类系数 Clustering coefficient | 平均路径 Average path |
---|---|---|---|---|---|---|---|
农田-7月 | 198 | 234 | 4.727 | 52.56 | 0.870 | 0.742 | 7.668 |
草地-7月 | 200 | 269 | 5.380 | 51.30 | 0.850 | 0.824 | 2.978 |
林地-7月 | 200 | 288 | 5.760 | 54.74 | 0.777 | 0.778 | 3.667 |
农田-8月 | 192 | 244 | 5.083 | 51.51 | 0.823 | 0.721 | 4.391 |
草地-8月 | 200 | 244 | 5.088 | 50.82 | 0.833 | 0.729 | 3.439 |
林地-8月 | 188 | 388 | 8.225 | 54.12 | 0.704 | 0.786 | 3.663 |
农田-9月 | 194 | 287 | 5.495 | 51.57 | 0.755 | 0.751 | 5.178 |
草地-9月 | 192 | 305 | 6.354 | 53.07 | 0.796 | 0.772 | 5.009 |
林地-9月 | 198 | 272 | 5.981 | 55.31 | 0.743 | 0.773 | 4.034 |
Fig.5
Structural equation model(A) and standardized total effects(B)The red arrow indicated a positive influence, the blue arrow indicated a negative influence, the solid line indicated that the path coefficient was significant, and the dotted line indicated that the path coefficient was not significant; the number on the arrow represented the path coefficient, and the arrow line thickness represented the magnitude of the path factor in the model; * indicated significant difference at P<0.05, ** indicated significant difference at P<0.01.
1 | YAO H, HE Z, WILSON M J,et al.Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use[J].Microbial Ecology,2000,40:223-237. |
2 | YANG X D, LENG Y, ZHOU Z Y,et al.Ecological management model for the improvement of soil fertility through the regulation of rare microbial taxa in tea(Camellia sinensis L.) plantation soils[J].Journal of Environmental Management,2022,308:114595. |
3 | DANGI S R.Soil ecology and ecosystem services[J].Soil Science Society of America Journal,2014,78(1):335. |
4 | 王光华,胡晓婧,于镇华,等.施肥对我国黑土农田土壤微生物群落多样性影响的研究及展望[J].土壤与作物,2024,13(2):127-139. |
WANG G H, HU X J, YU Z H,et al.Effects of fertilization on soil microbial community diversity in Chinese arable black soils:research progress and prospects[J].Soils and Crops,2024,13(2):127-139. | |
5 | WANG M, QU L Y, MA K M,et al.Soil microbial properties under different vegetation types on Mountain Han[J].Science China Life Sciences,2013,56:561-570. |
6 | SZOBOSZLAY M, DOHRMANN A B, POEPLAU C,et al.Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe[J].FEMS Microbiology Ecology,2017,93(12):fix146. |
7 | 孔亚丽,秦华,朱春权,等.土壤微生物影响土壤健康的作用机制研究进展[J].土壤学报,2024,61(2):331-347. |
KONG Y L, QIN H, ZHU C Q,et al.Research progress on the mechanism by which soil microorganisms affect soil health[J].Acta Pedologica Sinica,2024,61(2):331-347. | |
8 | ZHU R H, AZENE B, GRUBA P,et al.Response of carbohydrate-degrading enzymes and microorganisms to land use change in the southeastern Qinghai-Tibetan Plateau,China[J].Applied Soil Ecology,2024,200:105442. |
9 | LI J B, POKHAREL P, LIU G M,et al.Reclamation of desert land to different land‐use types changes soil bacterial community composition in a desert‐oasis ecotone[J].Land Degradation & Development,2021,32(3):1389-1399. |
10 | CHEN Y L, YANG X, FU W,et al.Conversion of natural grassland to cropland alters microbial community assembly across northern China[J].Environmental Microbiology,2022,24(12):5630-5642. |
11 | XIONG C, ZHU Y G, WANG J T,et al.Host selection shapes crop microbiome assembly and network complexity[J].New Phytologist,2021,229(2):1091-1104. |
12 | CORNELL C R, ZHANG Y, NING D L,et al.Land use conversion increases network complexity and stability of soil microbial communities in a temperate grassland[J].The ISME Journal,2023,17(12):2210-2220. |
13 | GOSS-SOUZA D, MENDES L W, BORGES C D,et al.Soil microbial community dynamics and assembly under long-term land use change[J].FEMS Microbiology Ecology,2017,93(10):fix109. |
14 | HUANG J Q, LIU X L, LIU J G,et al.Changes of soil bacterial community,network structure,and carbon,nitrogen and sulfur functional genes under different land use types[J].Catena,2023,231:107385. |
15 | DE VRIES F T, THÉBAULT E, LIIRI M,et al.Soil food web properties explain ecosystem services across European land use systems[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(35):14296-14301. |
16 | GOMEZ E, GARLAND J, CONTI M.Reproducibility in the response of soil bacterial community-level physiological profiles from a land use intensification gradient[J].Applied Soil Ecology,2004,26(1):21-30. |
17 | WANG Q B, WANG Z Y, WU L H,et al.Conversion of wetlands to farmland and forests reduces soil microbial functional diversity and carbon use intensity[J].Applied Ecology and Environmental Research,2022,20(5):4553-4564. |
18 | TSIAFOULI M A, THÉBAULT E, SGARDELIS S P,et al.Intensive agriculture reduces soil biodiversity across Europe[J].Global Change Biology,2015,21(2):973-985. |
19 | 黄世威,赵一锴,朱馨雨,等.不同土地利用方式下土壤有机质分子组成变化的整合分析[J].环境科学,2024,45(5):2848-2858. |
HUANG S W, ZHAO Y K, ZHU X Y,et al.Integrated analysis of soil organic matter molecular composition changes under different land uses[J].Environmental Science,2024,45(5):2848-2858. | |
20 | 杨雨薇,何宝辉,韩学娇,等.林龄对毛白杨功能性状和林下土壤理化性质的影响及其耦合关系[J].植物研究,2023,43(6):857-867. |
YANG Y W, HE B H, HAN X J,et al.Effects of stand age on functional traits and understory soil physicochemical properties of Populus tomentosa and their coupling relationships[J].Bulletin of Botanical Research,2023,43(6):857-867. | |
21 | PENG X Q, WANG W.Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J].Soil Biology and Biochemistry,2016,98:74-84. |
22 | MA J C, NERGUI S, HAN Z M,et al.The variation of the soil bacterial and fungal community is linked to land use types in Northeast China[J].Sustainability,2019, 11(12):3286. |
23 | XIAO E Z, WANG Y Q, XIAO T F,et al.Microbial community responses to land-use types and its ecological roles in mining area[J].Science of the Total Environment,2021,775:145753. |
24 | 于少鹏,史传奇,胡宝忠,等.古大湖湿地盐碱土壤微生物群落结构及多样性分析[J].生态学报,2020, 40(11):3764-3775. |
YU S P, SHI C Q, HU B Z,et al.Analysis of microbial community structure and diversity of saline soil in Gudahu wetland[J].Acta Ecologica Sinica,2020,40(11):3764-3775. | |
25 | KLATT C G, LIU Z F, LUDWIG M,et al.Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring[J].The ISME journal,2013,7(9):1775-1789. |
26 | 金志薇,钟文辉,吴少松,等.植被退化对滇西北高寒草地土壤微生物群落的影响[J].微生物学报,2018,58(12):2174-2185. |
JIN Z W, ZHONG W H, WU S S,et al.Effect of vegetation degradation on microbial communities in alpine grassland soils in Northwest Yunnan[J].Acta Microbiologica Sinica,2018,58(12):2174-2185. | |
27 | SCHELLENBERGER S, KOLB S, DRAKE H L.Metabolic responses of novel cellulolytic and saccharolytic agricultural soil bacteria to oxygen[J].Environmental Microbiology,2010,12(4):845-861. |
28 | 刘坤和,薛玉琴,竹兰萍,等.嘉陵江滨岸带不同土地利用类型对土壤细菌群落多样性的影响[J].环境科学,2022,43(3):1620-1629. |
LIU K H, XUE Y Q, ZHU L P,et al.Effect of different land use types on the diversity of soil bacterial community in the coastal zone of Jialing River[J].Environmental Science,2022,43(3):1620-1629. | |
29 | 高日平,段玉,张君,等.长期施肥对农牧交错带旱地土壤微生物多样性及群落结构的影响[J].环境科学,2023,44(2):1063-1073. |
GAO R P, DUAN Y, ZHANG J,et al.Effects of long-term fertilization on soil microbial diversity and community structure in the agro-pastoral ecotone[J].Environmental Science,2023,44(2):1063-1073. | |
30 | LAGERLÖF J, ADOLFSSON L, BÖRJESSON G,et al.Land-use intensification and agroforestry in the Kenyan highland:impacts on soil microbial community composition and functional capacity[J].Applied Soil Ecology,2014,82:93-99. |
31 | 吴希慧,王蕊,高长青,等.土地利用驱动的土壤性状变化影响微生物群落结构和功能[J].生态学报,2021,41(20):7989-8002. |
WU X H, WANG R, GAO C Q,et al.Variations of soil properties effect on microbial community structure and functional structure under land uses[J].Acta Ecologica Sinica,2021,41(20):7989-8002. | |
32 | JIAO S, CHEN W M, WANG J L,et al.Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems[J].Microbiome,2018,6(1):146. |
33 | HERNANDEZ D J, DAVID A S, MENGES E S,et al.Environmental stress destabilizes microbial networks[J].The ISME Journal,2021,15(6):1722-1734. |
34 | BANERJEE S, WALDER F, BÜCHI L,et al.Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J].The ISME Journal,2019,13(7):1722-1736. |
35 | KARIMI B, MARON P A, CHEMIDLIN-PREVOST BOURE N,et al.Microbial diversity and ecological networks as indicators of environmental quality[J].Environmental Chemistry Letters,2017,15:265-281. |
36 | 张君红,王健宇,孟泽昕,等.土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性[J].生态学报,2022,42(7):2542-2558. |
ZHANG J H, WANG J Y, MENG Z X,et al.Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow[J].Acta Ecologica Sinica,2022,42(7):2542⁃2558. | |
37 | BARBERÁN A, BATES S T, CASAMAYOR E O,et al.Using network analysis to explore co-occurrence patterns in soil microbial communities[J].The ISME Journal,2012,6(2):343-351. |
38 | REN C J, ZHANG X Y, ZHANG S H,et al.Altered microbial CAZyme families indicated dead biomass decomposition following afforestation[J].Soil Biology and Biochemistry,2021,160:108362. |
39 | DONG K, YE Z Y, HU F,et al.Improvement of plant quality by amino acid transporters:a comprehensive review[J].Plant Physiology and Biochemistry,2024,215:109084. |
40 | 郭楠,瞿红叶,高菲,等.氨基酸转运蛋白介导植物免疫研究进展[J].植物营养与肥料学报,2023,29(12):2360-2370. |
GUO N, QU H Y, GAO F,et al.The roles of amino acid transporters in plant immunity[J].Journal of Plant Nutrition and Fertilizers,2023,29(12):2360-2370. | |
41 | HE Z, YUAN C L, CHEN P R,et al.Soil microbial community composition and diversity analysis under different land use patterns in Taojia River Basin[J].Forests,2023,14(5):1004. |
42 | WATZINGER A, PROMMER J, SPIRIDON A,et al.Correction to:Functional redundant soil fauna and microbial groups and processes were fairly resistant to drought in an agroecosystem[J].Biology and Fertility of Soils,2023,59(6):643. |
43 | YANG Y, LI T, WANG Y Q,et al.Linkage between soil ectoenzyme stoichiometry ratios and microbial diversity following the conversion of cropland into grassland[J].Agriculture,Ecosystems & Environment,2021,314:107418. |
44 | DUAN Y, ZHU X J, SHEN J Z,et al.Genome-wide identification,characterization and expression analysis of the amino acid permease gene family in tea plants(Camellia sinensis)[J].Genomics,2020,112(4):2866-2874. |
45 | 胡志娥,肖谋良,丁济娜,等.长期覆膜条件下农田土壤微生物群落的响应特征[J].环境科学,2022, 43(10):4745-4754. |
HU Z E, XIAO M L, DING J N,et al.Response characteristics of soil microbial community under long-term film mulching[J].Environmental Science,2022,43(10):4745-4754. | |
46 | HERNÁNDEZ M, CALABI M, CONRAD R,et al.Analysis of the microbial communities in soils of different ages following volcanic eruptions[J].Pedosphere,2020,30(1):126-134. |
47 | MA B, WANG Y L, YE S D,et al.Earth microbial co-occurrence network reveals interconnection pattern across microbiomes[J].Microbiome,2020,8(1):82. |
48 | MORRIËN E, HANNULA S E, SNOEK L B,et al.Soil networks become more connected and take up more carbon as nature restoration progresses[J].Nature Communications,2017,8(1):14349. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||