Bulletin of Botanical Research ›› 2023, Vol. 43 ›› Issue (6): 923-931.doi: 10.7525/j.issn.1673-5102.2023.06.014
• Physiology and Ecology • Previous Articles Next Articles
Hongbo LI1, Shi CHEN1, Yaohua HUANG1, Dingxu KANG1, Jianrong WU2, Huancheng MA1()
Received:
2023-05-07
Online:
2023-11-20
Published:
2023-11-08
Contact:
Huancheng MA
E-mail:mhc@swfu.edu.cn
About author:
LI Hongbo(1993—),male,postgraduate,mainly engaged in research on vegetation restoration and conservation.
Supported by:
CLC Number:
Hongbo LI, Shi CHEN, Yaohua HUANG, Dingxu KANG, Jianrong WU, Huancheng MA. Ecological Stoichiometry and Homeostasis of Alpine Quercus semicarpifolia Leaves in Subalpine Zone of Hengduan Mountains[J]. Bulletin of Botanical Research, 2023, 43(6): 923-931.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2023.06.014
Table 1
Overview of samples and collection sites of Q. semicarpifolia
群落 Community | 采集地经纬度 Latitude & Longitude | 海拔 Altitude/m | 坡度 Slope/(°) | 采集日期 Acquisition time | 样地编号 Sample site No. |
---|---|---|---|---|---|
高山栎Quercus | 28°50′7″N,99°29′17″E | 2 610 | 33 | 2020-10-22 | GSL1 |
高山栎Quercus | 28°41′21″N,99°33′13″E | 2 340 | 3 | 2020-10-22 | GSL2 |
高山栎Quercus | 29°32′20″N,100°42′37″E | 2 230 | 12 | 2020-10-23 | GSL3 |
高山栎Quercus | 28°5′37″N,99°48′55″E | 2 650 | 4 | 2020-10-24 | GSL4 |
高山栎Quercus | 29°13′31″N,98°11′29″E | 2 970 | 12 | 2020-10-22 | GSL5 |
高山栎Quercus | 31°43′28″N,102°16′38″E | 2 310 | 28 | 2020-10-16 | GSL6 |
高山栎Quercus | 30°59′35″N,102°50′18″E | 2 340 | 30 | 2020-10-18 | GSL7 |
高山栎Quercus | 31°52′42″N,101°8′42″E | 3 040 | 48 | 2020-10-20 | GSL8 |
Table 2
Stoichiometric characteristics of C,N and P in soil and leaves of each Quercus forests sample site
样地编号 Sample site No. | 有机碳质量分数 | 全氮质量分数 | 全磷质量分数 | 碳氮比 | 碳磷比 | 氮磷比 | |
---|---|---|---|---|---|---|---|
土壤 Soil | GSL1 | 70.19±10.05 | 9.46±1.47 | 2.05±0.69 | 7.43±0.22 | 36.98±14.13 | 4.95±1.77 |
GSL2 | 61.79±7.60 | 7.63±1.79 | 1.43±0.35 | 8.46±2.64 | 44.07±6.14 | 5.48±1.59 | |
GSL3 | 38.86±10.73 | 6.39±3.05 | 0.79±0.13 | 7.51±4.52 | 49.96±13.25 | 7.86±2.99 | |
GSL4 | 43.34±8.46 | 4.29±1.70 | 0.61±0.17 | 12.04±7.68 | 74.42±22.72 | 7.22±2.91 | |
GSL5 | 45.76±7.00 | 8.32±1.29 | 0.77±0.19 | 5.65±1.55 | 60.23±6.47 | 12.90±3.65 | |
GSL6 | 53.92±10.72 | 3.54±0.94 | 0.80±0.12 | 16.07±5.33 | 67.71±10.82 | 4.41±0.91 | |
GSL7 | 44.27±7.26 | 4.88±1.05 | 1.05±0.10 | 9.62±3.84 | 42.87±9.94 | 4.65±0.81 | |
GSL8 | 58.14±9.36 | 7.49±3.67 | 1.55±0.18 | 9.06±4.56 | 38.09±9.14 | 4.85±2.50 | |
平均值Mean | 52.03 | 6.67 | 1.13 | 9.48 | 51.79 | 6.54 | |
标准差Standard deviation | 12.49 | 2.77 | 0.52 | 4.79 | 17.07 | 2.86 | |
变异系数Coefficient of variation/% | 22.07 | 41.53 | 46.02 | 50.53 | 32.96 | 43.73 | |
样地编号 Sample site No. | 有机碳质量分数 | 全氮质量分数 | 全磷质量分数 | 碳氮比 | 碳磷比 | 氮磷比 | |
叶片 Leaf | GSL1 | 443.46±12.65 | 31.47±2.26 | 2.46±0.41 | 14.16±1.44 | 180.70±14.52 | 12.84±1.54 |
GSL2 | 438.51±5.73 | 28.51±2.63 | 2.67±0.36 | 15.47±1.54 | 165.28±18.55 | 10.82±2.16 | |
GSL3 | 461.09±3.72 | 24.97±0.74 | 3.06±0.66 | 18.48±0.70 | 155.82±36.67 | 8.44±2.01 | |
GSL4 | 471.78±10.71 | 23.95±4.17 | 2.21±0.33 | 20.17±4.10 | 215.86±26.98 | 11.11±3.06 | |
GSL5 | 473.86±7.61 | 21.22±1.99 | 2.53±0.23 | 22.46±2.10 | 188.29±14.09 | 8.43±1.04 | |
GSL6 | 438.21±8.36 | 25.33±3.46 | 3.68±0.59 | 17.48±1.98 | 121.41±20.83 | 6.99±1.29 | |
GSL7 | 470.69±11.94 | 31.68±2.35 | 2.94±0.30 | 14.90±0.99 | 160.90±16.48 | 10.88±1.86 | |
GSL8 | 428.31±25.55 | 27.14±2.12 | 3.51±0.89 | 15.82±1.14 | 126.82±29.85 | 7.95±1.33 | |
平均值Mean | 453.24 | 26.79 | 2.89 | 17.36 | 164.39 | 9.68 | |
标准差Standard deviation | 19.76 | 4.04 | 0.63 | 3.20 | 34.96 | 2.42 | |
变异系数Coefficient of variation/% | 4.36 | 15.10 | 21.80 | 16.98 | 21.27 | 25.03 |
Table 3
Ecological stoichiometric homeostasis characteristics of Quercus alpine samples
样本编号 Sample No. | 1/H R2=0.022 C=26.695 P<0.05 | 是否稳态 Whether homeostasis | 以绝对值探讨 WHDIAV | 1/H R2=0.104 C=2.802 P<0.05 | 是否稳态 Whether homeostasis | 以绝对值探讨 WHDIAV | 1/H[ R2=0.012 C=9.566 P<0.05 | 是否稳态 Whether homeostasis | 以绝对值探讨 WHDIAV |
---|---|---|---|---|---|---|---|---|---|
平均值Mean | -0.002 | — | 稳态homeostasis | 0.009 | 稳态homeostasis | 稳态homeostasis | 0.586 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl1-1 | 0.085 | 稳态homeostasis | 稳态homeostasis | 0.656 | 弱敏感weakly sensitive | 弱敏感weakly sensitive | 0.430 | 弱稳态Weakly homeostasis | 弱稳态Weakly homeostasis |
gsl1-2 | 0.037 | 稳态homeostasis | 稳态homeostasis | 0.395 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis | 0.596 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl1-3 | 0.097 | 稳态homeostasis | 稳态homeostasis | 1.206 | 敏感sensitive | 敏感sensitive | 0.389 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis |
gsl2-1 | -0.005 | — | 稳态homeostasis | 0.513 | 弱敏感weakly sensitive | 弱敏感weakly sensitive | 0.562 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl2-2 | 0.021 | 稳态homeostasis | 稳态homeostasis | 0.362 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis | 0.443 | 稳态homeostasis | 稳态homeostasis |
gsl2-3 | 0.079 | 稳态homeostasis | 稳态homeostasis | 0.104 | 稳态homeostasis | 稳态homeostasis | 0.594 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl3-1 | -0.021 | — | 稳态homeostasis | -0.097 | — | 稳态homeostasis | 0.771 | 敏感sensitive | 敏感sensitive |
gsl3-2 | -0.090 | — | 稳态homeostasis | -0.379 | — | 弱稳态weakly homeostasis | 0.557 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl3-3 | -0.027 | — | 稳态homeostasis | -0.201 | — | 稳态homeostasis | 0.753 | 敏感sensitive | 敏感sensitive |
gsl4-1 | -0.181 | — | 稳态homeostasis | -0.262 | — | 弱稳态weakly homeostasis | 0.727 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl4-2 | 0.030 | 稳态homeostasis | 稳态homeostasis | -0.596 | — | 弱敏感weakly sensitive | 0.429 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis |
gsl4-3 | -0.043 | — | 稳态homeostasis | -1.255 | — | 敏感sensitive | 0.684 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl5-1 | -0.145 | — | 稳态homeostasis | -0.041 | — | 稳态homeostasis | 0.747 | 敏感sensitive | 敏感sensitive |
gsl5-2 | -0.063 | — | 稳态homeostasis | -0.263 | — | 弱稳态weakly homeostasis | 0.762 | 敏感sensitive | 敏感sensitive |
gsl5-3 | -0.122 | — | 稳态homeostasis | -0.645 | — | 弱敏感weakly sensitive | 0.960 | 敏感sensitive | 敏感sensitive |
gsl6-1 | -0.067 | — | 稳态homeostasis | -0.075 | — | 稳态homeostasis | 0.492 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis |
gsl6-2 | 0.096 | 稳态homeostasis | 稳态homeostasis | -0.274 | — | 弱稳态weakly homeostasis | 0.476 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis |
gsl6-3 | -0.119 | — | 稳态homeostasis | -0.160 | — | 稳态homeostasis | 0.678 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl7-1 | 0.134 | 稳态homeostasis | 稳态homeostasis | 0.152 | 稳态homeostasis | 稳态homeostasis | 0.483 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis |
gsl7-2 | 0.141 | 稳态homeostasis | 稳态homeostasis | -0.000 | — | 稳态homeostasis | 0.427 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis |
gsl7-3 | 0.054 | 稳态homeostasis | 稳态homeostasis | -0.018 | — | 稳态homeostasis | 0.546 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
gsl8-1 | 0.073 | 稳态homeostasis | 稳态homeostasis | 0.229 | 稳态homeostasis | 稳态homeostasis | 0.391 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis |
gsl8-2 | -0.025 | — | 稳态homeostasis | 0.493 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis | 0.490 | 弱稳态weakly homeostasis | 弱稳态weakly homeostasis |
gsl8-3 | -0.003 | — | 稳态homeostasis | 0.362 | 稳态homeostasis | 弱稳态weakly homeostasis | 0.682 | 弱敏感weakly sensitive | 弱敏感weakly sensitive |
1 | ELSER J J, DOBBERFUHL D R, MACKAY N A,et al.Organism size,life history,and N∶P stoichiometry:toward a unified view of cellular and ecosystem processes[J].BioScience,1996,46(9):674-684. |
2 | ELSER J J, STERNER R W, GALFORD A E,et al.Pelagic C∶N∶P stoichiometry in a eutrophied lake:responses to a whole-lake food-web manipulation[J].Ecosystems,2000,3(3):293-307. |
3 | MAKINO W, COTNER J B, STERNER R W,et al.Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶N∶P stoichiometry[J].Functional Ecology,2003,17(1):121-130. |
4 | STERNER R W, ELSER J J.Ecological stoichiometry:the biology of elements from molecules to the biosphere[M].New Jersey:Princeton University Press,2002. |
5 | ELSER J J, HAMILTON A.Stoichiometry and the new biology:the future is now[J].PLoS Biology,2007,5(7):e181. |
6 | ELSER J J, FAGAN W F, KERKHOFF A J,et al.Biological stoichiometry of plant production:metabolism,scaling and ecological response to global change[J].New Phytologist,2010,186(3):593-608. |
7 | MINDEN V, KLEYER M.Internal and external regulation of plant organ stoichiometry[J].Plant Biology,2014,16(5):897-907. |
8 | REICH P B, OLEKSYN J, WRIGHT I J,et al.Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes[J].Proceedings of the Royal Society B:Biological Sciences,2010,277(1683):877-883. |
9 | KOOJIMAN S A L M.The stoichiometry of animal energetics[J].Journal of Theoretical Biology,1995,177(2):139-149. |
10 | REICH P B, OLEKSYN J.Global patterns of plant leaf N and P in relation to temperature and latitude[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001-11006. |
11 | HAN W X, FANG J Y, GUO D L,et al.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J].New Phytologist,2005,168(2):377-385. |
12 | HAN W X, FANG J Y, REICH P B,et al.Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate,soil and plant functional type in China[J].Ecology Letters,2011,14(8):788-796. |
13 | 姜沛沛,曹扬,陈云明.陕西省森林群落乔灌草叶片和凋落物C、N、P生态化学计量特征[J].应用生态学报,2016,27(2):365-372. |
JIANG P P, CAO Y, CHEN Y M.C,N,P stoichiometric characteristics of tree,shrub,herb leaves and litter in forest community of Shaanxi Province,China[J].Chinese Journal of Applied Ecology,2016,27(2):365-372. | |
14 | 李鸿博,许云蕾,余志祥,等.金沙江干热河谷典型植物叶片C、N、P生态化学计量特征研究[J].西北林学院学报,2021,36(3):10-16. |
LI H B, XU Y L, YU Z X,et al.Eco-stoichiometric characteristics of C,N and P in the leaves of typical plants in Dry-Hot Valley of Jinsha River[J].Journal of Northwest Forestry University,2021,36(3):10-16. | |
15 | 李丽,胡君,于倩楠,等.横断山区高山栎组灌木型植物C、N、P生态化学计量特征[J].山地学报,2018,36(6):878-888. |
LI L, HU J, YU Q N,et al.Stoichiometric characteristics of carbon,nitrogen and phosphorus in Quercus Sect.Heterobalanus shrubs in the Hengduan Mountain,China[J].Mountain Research,2018,36(6):878-888. | |
16 | PERSSON J, FINK P, GOTO A,et al.To be or not to be what you eat:regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J].Oikos,2010,119(5):741-751. |
17 | DIJKSTRA F A, PENDALL E, MORGAN J A,et al.Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland[J].New Phytologist,2012,196(3):807-815. |
18 | YU Q, WILCOX K, PIERRE K L,et al.Stoichiometric homeostasis predicts plant species dominance,temporal stability,and responses to global change[J].Ecology,2015,96(9):2328-2335. |
19 | 王襄平,王志恒,方精云.中国的主要山脉和山峰[J].生物多样性.2004,12(1):206-212. |
WANG X P, WANG Z H, FANG J Y.Mountain ranges and peaks in China[J].Biodiversity Science,2004,12(1):206-212. | |
20 | 周浙昆.中国栎属的地理分布[J].中国科学院研究生院学报,1993,10(1):95-108. |
ZHOU Z K.Geographical distribution of Quercus from China[J].Journal of University of Chinese Academy of Sciences,1993,10(1):95-108. | |
21 | 宋语涵,张鹏,金光泽.阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J].植物生态学报,2021,45(9):952-960. |
SONG Y H, ZHANG P, JIN G Z.Characteristics of shrub leaf carbon,nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages[J].Chinese Journal of Plant Ecology,2021,45(9):952-960. | |
22 | 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000:30-270. |
BAO S D.Soil agrochemical analysis[M].3rd ed.BeiJing:China Agriculture Press,2000:30-270. | |
23 | 张泽洲,王冬梅,李梦寻.干湿交替程度对土壤速效养分的影响[J].水土保持学报,2021,35(2):265-270. |
ZHANG Z Z, WANG D M, LI M X.Effect of drying-rewetting intensity on soil nutrient availability[J].Journal of Soil and Water Conservation,2021,35(2):265-270. | |
24 | PENG C, TU J, YANG M,et al.Root stoichiometric dynamics and homeostasis of invasive species Phyllostachys edulis and native species Cunninghamia lanceolata in a subtropical forest in China[J].Journal of Forestry Research,2021,32(5):2001-2010. |
25 | GÜSEWELL S.N:P ratios in terrestrial plants:variation and functional significance[J].New Phytologist,2004,164(2):243-266. |
26 | 贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6. |
HE J S, HAN X G.Ecological stoichiometry:searching for unifying principles from individuals to ecosystems[J].Chinese Journal of Plant Ecology,2010,34(1):2-6. | |
27 | VOGEL S.Macroscope:academically correct biological Science[J].American Scientist,1998,86(6):504-506. |
28 | TIAN D S, REICH P B, CHEN H Y H,et al.Global changes alter plant multi-element stoichiometric coupling[J].New Phytologist,2019,221(2):807-817. |
29 | TIAN H Q, CHEN G S, ZHANG C,et al.Pattern and variation of C∶N∶P ratios in China’s soils:a synthesis of observational data[J].Biogeochemistry,2010,98(1/2/3):139-151. |
30 | 汪涛,杨元合,马文红.中国土壤磷库的大小、分布及其影响因素[J].北京大学学报(自然科学版),2008,44(6):945-952. |
WANG T, YANG Y H, MA W H.Storage,patterns and environmental controls of soil phosphorus in China[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2008,44(6):945-952. | |
31 | CLEVELAND C C, LIPTZIN D.C∶N∶P stoichiometry in soil:is there a “Redfield ratio” for the microbial biomass?[J].Biogeochemistry,2007,85(3):235-252. |
32 | KOERSELMAN W, MEULEMAN A F M.The vegetation N∶P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology,1996,33(6):1441-1450. |
33 | BRAAKHEKKE W G, HOOFTMAN D A P.The resource balance hypothesis of plant species diversity in grassland[J].Journal of Vegetation Science,1999,10(2):187-200. |
34 | GARNIER E.Interspecific variation in plasticity of grasses in response to nitrogen supply[M].//CHEPLICK G P.Population biology of grasses.London:Cambridge University Press,1998:155-182. |
35 | ELSER J J, STERNER R W, GOROKHOVA E,et al.Biological stoichiometry from genes to ecosystems[J].Ecology Letters,2000,3(6):540-550. |
36 | 任书杰,于贵瑞,姜春明,等.中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J].应用生态学报,2012,23(3):581-586. |
REN S J, YU G R, JIANG C M,et al.Stoichiometric characteristics of leaf carbon,nitrogen,and phosphorus of 102 dominant species in forest ecosystems along the north-south transect of east China[J].Chinese Journal of Applied Ecology,2012,23(3):581-586. | |
37 | Marschner H.Marschner’s mineral nutrition of higher plants[M].Netherlands:Academic Press,2011. |
38 | 苏强.浮游动物化学计量学稳态性特征研究进展[J].生态学报,2012,32(22):7213-7219. |
SU Q.The framework of stoichiometry homeostasis in zooplankton elemental composition[J].Acta Ecologica Sinica,2012,32(22):7213-7219. | |
39 | VITOUSEK P M.Foliar and litter nutrients,nutrient resorption,and decomposition in Hawaiian Me t rosideros polymorpha[J].Ecosystems,1998,1(4):401-407. |
40 | 蒋利玲,曾从盛,邵钧炯,等.闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征[J].植物生态学报,2017,41(4):450-460. |
JIANG L L, ZENG C S, SHAO J J,et al.Plant nutrient dynamics and stoichiometric homeostasis of invasive species Spartina alterniflora and native Cyperus malaccensis var.brevifolius in the Minjiang River estuarine wetlands[J].Chinese Journal of Plant Ecology,2017,41(4):450-460. |
[1] | Yang LIU, Liying XU, Tongchao WEI, Lanyi SHEN, Dounan LIU, Yue LIU. Response of Leaf Functional Traits and their relationships to Seasonal Changes in Four Acer Species [J]. Bulletin of Botanical Research, 2023, 43(2): 242-250. |
[2] | Mengqiao GUO, Xuanyu CHEN, Senrong HONG, Jiao LI, Jie FAN, Xinyu CHENG. The Correlation Between Leaf Phenotype Diversity and Total Flavonoids Content of Overground Part of Tetrastigma hemsleyanum Diels & Gilg [J]. Bulletin of Botanical Research, 2022, 42(5): 876-885. |
[3] | Weiwei ZHUANG, Mingming WANG. Comparative Analysis of Nutrient Elements of Eight Herbaceous Plants in Desert Area [J]. Bulletin of Botanical Research, 2022, 42(5): 896-909. |
[4] | Mingming Wang, Weiwei Zhuang. The Stoichiometric Characteristics of Desert Ephemeral Plants in Different Growth Periods and Its Association with Soil Factors [J]. Bulletin of Botanical Research, 2022, 42(1): 138-150. |
[5] | TAN Yong-Jia, GAO Cui-Fang, CHEN Xue-Lin. Comparison of Essential Oil Components in Ajania tenuifolia(Jacq.) Tzvel. at Different Altitudes [J]. Bulletin of Botanical Research, 2020, 40(5): 782-788. |
[6] | CAI Nian-Hui, WANG Da-Wei, HUANG Wen-Xue, WU Jun-Wen, WANG Jun-Min, CHEN Shi, XU Yu-Lan, DUAN An-An. Correlation and Path Analysis on Growth Traits and Biomass of Pinus yunnanensis Seedlings [J]. Bulletin of Botanical Research, 2019, 39(6): 853-862. |
[7] | ZHOU Li-Jun, YU Chao, CHANG Xiao, WAN Hui-Hua, LUO Le, PAN Hui-Tang, ZHANG Qi-Xiang. Variation Analysis of Phenotypic Traits in F1 Population of Rosa spp [J]. Bulletin of Botanical Research, 2019, 39(1): 131-138. |
[8] | CHANG Bo-Wen, LIU Jie, ZHONG Peng, GUO Xiao-Rui. Effects of Exogenous Ethylene on Physiology and Alkaloid Accumulations in Catharanthus roseus [J]. Bulletin of Botanical Research, 2018, 38(2): 284-291. |
[9] | HUNG Wen-Juan, JIAO Pei-Pei, HUANG Jin-Hua, ZHANG Dan. Leaf Anatomical Structure of Populus euphratica in Tarim River Basin [J]. Bulletin of Botanical Research, 2016, 36(5): 669-675. |
[10] | LI Hui, WANG Bai-Tian, CAO Yuan-Bo, LIU Qing-Qing, LI De-Ning. Difference Feature of Planted Vegetation Biomass and Litter Biomass for Three Plantations and Their Relationship with Soil Nutrients in Lvliang Mountainous Region [J]. Bulletin of Botanical Research, 2016, 36(4): 573-580. |
[11] | LUO Meng, HU Jiao-Yang, SONG Zhuo-Yue, MU Fan-Song, YU Xue-Ying, QIAO Qi, RUAN Xin, YANG Xuan, ZU Yuan-Gang. Seasonal Variation of Total Flavonoids from Crataegus pinnatifida and Correlation Analysis of Climatic Factors [J]. Bulletin of Botanical Research, 2016, 36(3): 476-480. |
[12] | XU Bin1;PENG Li-Xia2;YANG Hui-Xiao1*;PAN Wen1;ZHANG Fang-Qiu1. Genetic Diversity Analysis for Leaf Main Traits of Camellia azalea [J]. Bulletin of Botanical Research, 2015, 35(5): 730-734. |
[13] | LIU Dian-Kun1;LIU Meng-Ran1;LI Zhi-Xin1;WANG Guang-Yu2;LI Ying1;ZHENG Mi1;LIU Gui-Feng1;ZHAO Xi-Yang1*. Variation Analysis of Growth Traits of Transgenic Populus simonii×P.nigra Clones Carrying TaLEA Gene [J]. Bulletin of Botanical Research, 2015, 35(4): 540-546. |
[14] | YANG Qing-Xiao;ZHU Liang-Jun;WANG Xiao-Chun. Development of Pinus koraiensis Tree-ring Chronology and Master Year Analysis in Liangshui National Natural Reserve,China [J]. Bulletin of Botanical Research, 2015, 35(3): 418-424. |
[15] | OU Zhi-Yang;;ZHU Ji-Yu;;PENG Yu-Hua;;HE Qin-Fei;;PANG Shi-Long;. Relationship between Plant Diversity and Environmental Factors of Excentrodendron hsienmu Community in Karst Mountains in Pinguo County,Guangxi [J]. Bulletin of Botanical Research, 2014, 34(2): 204-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||