Bulletin of Botanical Research ›› 2023, Vol. 43 ›› Issue (5): 729-740.doi: 10.7525/j.issn.1673-5102.2023.05.010
• Physiology and Ecology • Previous Articles Next Articles
Hangmei YANG1,2, Liping LI1,2, Mei SUN1,2(), Hongyi CHEN1,2, Lingyan LI3, Chunhui FENG2
Received:
2023-04-13
Online:
2023-09-20
Published:
2023-09-05
Contact:
Mei SUN
E-mail:sm0510215@163.com
About author:
YANG Hangmei(1998—),female,postgraduate,research direction is Wetland Ecology.
Supported by:
CLC Number:
Hangmei YANG, Liping LI, Mei SUN, Hongyi CHEN, Lingyan LI, Chunhui FENG. Response of leaf Hydraulic Traits of Typha orientalis to Simulated Warming and Elevated CO2 Concentration[J]. Bulletin of Botanical Research, 2023, 43(5): 729-740.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2023.05.010
Fig.3
Differences in photosynthetic traits of T. orientalis leaves in different treatmentsDifferent lowercase letters indicated significant differences at the 0.05 level(P<0.05),the same letter meant no significant difference(P≥0.05);CK.Control;EC. CO2 concentration doubling;ET.Warming 2 ℃;The same as below
Table 1
Correlations among functional traits of Typha orientalis leaves
功能性状 Functional traits | 净光合速率 Pn | 气孔导度 Gs | 胞间CO2摩尔分数 Ci | 蒸腾速率 Tr | 叶脉密度 DV | 维管束面积 AB | 维管束长度 LB | 维管束宽度 WB | 导管面积 AC | 导管长度 LC | 导管宽度 WC | 气孔面积 AS | 气孔密度DS | 表皮细胞厚度TEC | 表皮细胞面积AEC | 角质层厚度 TC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
净光合速率Pn | 0.959** | 0.896** | 0.998** | -0.094 | 0.057 | -0.027 | -0.059 | -0.148 | 0.041 | 0.134 | -0.526** | 0.275 | 0.234 | -0.214 | 0.163 | |
气孔导度Gs | 0.912** | 0.985** | 0.940** | -0.028 | 0.021 | 0.030 | -0.073 | -0.188 | -0.166 | 0.087 | -0.319 | 0.278 | 0.092 | -0.156 | 0.069 | |
胞间CO2摩尔分数Ci | 0.655 | 0.872** | 0.866** | 0.013 | -0.003 | 0.063 | -0.078 | -0.205 | -0.285 | 0.054 | -0.181 | 0.269 | 0.002 | -0.115 | 0.009 | |
蒸腾速率Tr | 0.742* | 0.936** | 0.968** | -0.107 | 0.065 | -0.039 | -0.055 | -0.138 | 0.086 | 0.143 | -0.565** | 0.271 | 0.262 | -0.224 | 0.181 | |
叶脉密度DV | -0.444 | -0.087 | 0.302 | 0.182 | -0.230 | -0.098 | -0.131 | -0.001 | -0.467* | 0.068 | 0.168 | 0.049 | 0.092 | 0.055 | 0.407 | |
维管束面积AB | 0.263 | -0.094 | -0.288 | -0.262 | -0.770* | 0.217 | -0.135 | -0.151 | 0.128 | -0.133 | -0.373 | -0.114 | 0.222 | 0.179 | 0.138 | |
维管束长度LB | -0.008 | -0.281 | -0.400 | -0.413 | -0.582 | 0.881** | 0.329 | -0.257 | -0.171 | -0.028 | 0.121 | -0.067 | -0.190 | 0.133 | -0.391 | |
维管束宽度WB | 0.612 | 0.272 | -0.002 | 0.017 | -0.844** | 0.810** | 0.575 | -0.083 | -0.069 | -0.264 | 0.012 | -0.112 | 0.000 | -0.256 | -0.064 | |
导管面积AC | 0.104 | -0.260 | -0.566 | -0.483 | -0.839** | 0.586 | 0.414 | 0.637 | 0.211 | 0.053 | 0.215 | 0.088 | 0.031 | 0.090 | 0.461* | |
导管长度LC | -0.057 | -0.268 | -0.404 | -0.278 | -0.423 | 0.262 | -0.032 | 0.156 | 0.669* | 0.362 | -0.376 | 0.135 | 0.199 | -0.247 | 0.245 | |
导管宽度WC | -0.772* | -0.727* | -0.658 | -0.602 | 0.254 | -0.262 | -0.106 | -0.650 | 0.093 | 0.438 | 0.072 | 0.017 | -0.228 | -0.084 | 0.012 | |
气孔面积AS | -0.286 | -0.478 | -0.428 | -0.538 | -0.159 | 0.443 | 0.626 | 0.227 | 0.401 | -0.001 | 0.164 | 0.044 | -0.561** | 0.122 | -0.309 | |
气孔密度DS | 0.071 | 0.444 | 0.680* | 0.658 | 0.738* | -0.700* | -0.650 | -0.592 | -0.890** | -0.450 | -0.162 | -0.678* | 0.253 | -0.249 | -0.025 | |
表皮细胞厚度TEC | 0.149 | 0.089 | -0.148 | 0.011 | -0.501 | 0.130 | 0.001 | 0.141 | 0.275 | 0.312 | 0.111 | -0.518 | -0.142 | -0.564** | 0.365 | |
表皮细胞面积AEC | -0.104 | -0.154 | -0.353 | -0.212 | -0.495 | 0.132 | 0.191 | 0.048 | 0.350 | 0.254 | 0.278 | -0.270 | -0.233 | 0.864** | -0.039 | |
角质层厚度TC | -0.221 | -0.471 | -0.595 | -0.520 | -0.493 | 0.611 | 0.544 | 0.214 | 0.528 | 0.558 | 0.473 | 0.341 | -0.695* | 0.454 | 0.411 |
Table 1
Correlations among functional traits of Typha orientalis leaves
功能性状 Functional traits | 净光合速率 Pn | 气孔导度 Gs | 胞间CO2摩尔分数 Ci | 蒸腾速率 Tr | 叶脉密度 DV | 维管束面积 AB | 维管束长度 LB | 维管束宽度 WB | 导管面积 AC | 导管长度 LC | 导管宽度 WC | 气孔面积 AS | 气孔密度 DS | 表皮细胞厚度 TEC | 表皮细胞面积 AEC | 角质层厚度 TC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
净光合速率Pn | -0.120 | -0.969** | 0.009 | 0.829** | -0.524** | -0.422* | -0.050 | -0.545** | -0.441* | -0.252 | -0.862** | 0.044 | -0.247 | 0.363 | 0.292 | |
气孔导度Gs | 0.243 | 0.362 | 0.992** | -0.145 | -0.233 | -0.143 | 0.172 | 0.423* | 0.394 | 0.369 | 0.549** | -0.308 | -0.312 | -0.486* | 0.188 | |
胞间CO2摩尔分数Ci | -0.989** | -0.095 | 0.239 | -0.814** | 0.434* | 0.361 | 0.090 | 0.617** | 0.512* | 0.328 | 0.946** | -0.118 | 0.155 | -0.462* | -0.228 | |
蒸腾速率Tr | 0.000 | 0.970** | 0.149 | -0.039 | -0.302 | -0.199 | 0.166 | 0.355 | 0.340 | 0.339 | 0.441* | -0.304 | -0.346 | -0.443* | 0.227 | |
叶脉密度DV | -0.898** | -0.318 | 0.872** | -0.103 | -0.348 | -0.254 | 0.067 | -0.426* | -0.217 | -0.200 | -0.781** | -0.034 | -0.207 | 0.247 | 0.246 | |
维管束面积AB | 0.576** | -0.377 | -0.649** | -0.532** | -0.517** | 0.540** | 0.049 | 0.128 | 0.113 | -0.013 | 0.261 | -0.273 | 0.241 | 0.050 | -0.547** | |
维管束长度LB | 0.384 | -0.300 | -0.440* | -0.405* | -0.314 | 0.523** | 0.342 | 0.262 | 0.140 | 0.005 | 0.277 | -0.082 | 0.238 | -0.274 | -0.216 | |
维管束宽度WB | 0.272 | -0.207 | -0.311 | -0.282 | -0.066 | 0.192 | 0.211 | 0.077 | 0.302 | 0.023 | 0.075 | -0.309 | 0.344 | -0.048 | -0.253 | |
导管面积AC | 0.624** | 0.054 | -0.632** | -0.101 | -0.539** | 0.489* | 0.377 | 0.059 | 0.610** | 0.577** | 0.550** | -0.080 | 0.017 | -0.542** | -0.037 | |
导管长度LC | 0.716** | 0.276 | -0.692** | 0.106 | -0.583** | 0.403 | 0.286 | 0.187 | 0.543** | 0.624** | 0.459* | -0.182 | 0.021 | -0.478* | -0.244 | |
导管宽度WC | 0.370 | 0.255 | -0.340 | 0.170 | -0.332 | 0.251 | 0.188 | 0.010 | 0.378 | 0.581** | 0.355 | -0.081 | -0.354 | -0.365 | 0.071 | |
气孔面积AS | 0.344 | -0.806** | -0.478* | -0.918** | -0.221 | 0.671** | 0.502* | 0.341 | 0.334 | 0.144 | -0.030 | -0.144 | 0.061 | -0.487* | -0.121 | |
气孔密度DS | -0.551** | 0.315 | 0.614** | 0.462* | 0.380 | -0.453* | 0.487* | -0.342 | -0.400 | -0.318 | 0.076 | -0.632** | -0.260 | 0.016 | 0.387 | |
表皮细胞厚度TEC | 0.365 | 0.932** | -0.231 | 0.870** | -0.401 | -0.225 | -0.079 | -0.149 | 0.195 | 0.275 | 0.326 | -0.690** | 0.201 | 0.145 | -0.580** | |
表皮细胞面积AEC | 0.499* | 0.904** | -0.372 | 0.807** | -0.533** | -0.156 | -0.139 | -0.013 | 0.297 | 0.447* | 0.362 | -0.543** | 0.081 | 0.913** | 0.048 | |
角质层厚度TC | 0.737** | -0.114 | -0.774** | -0.302 | -0.718** | 0.673** | 0.299 | 0.186 | 0.485* | 0.659** | 0.384 | 0.526** | -0.505* | -0.06 | 0.122 |
1 | 彭兰,周晓兵,陶冶,等.干旱对梭梭水力性状及生理生化特性的影响[J].生态学杂志,2023,42(2):257-265. |
PENG L, ZHOU X B, TAO Y,et al.Effects of drought on hydraulic traits and physio-biochemical characteristics of Haloxylon ammodendron [J].Chinese Journal of Ecology,2023,42(2):257-265. | |
2 | ISUNJU J B, KEMP J.Spatiotemporal analysis of encroachment on wetlands:a case of Nakivubo wetland in Kampala,Uganda[J].Environmental Monitoring and Assessment,2016,188(4):203. |
3 | 黄小,姚兰,王进,等.土壤养分对不同生活型植物叶功能性状的影响[J].西北植物学报,2018,38(12):2293-2302. |
HUANG X, YAO L, WANG J,et al.Effect of soil nutrients on leaf functional traits of different life form plants[J].Acta Botanica Boreali Accidentalia Sinica,2018,38(12):2293-2302. | |
4 | 李洪军,吴玉环,张志祥,等.温度变化对木本植物光合生理生态的影响[J].贵州农业科学,2009,37(9):39-42;45. |
LI H J, WU Y H, ZHANG Z X,et al.Effect of temperature stress on photosynthetic physioecological characteristic of wood plants[J].Guizhou Agricultural Sciences,2009,37(9):39-42;45. | |
5 | 赵娜,李富荣.温度升高对不同生活型植物光合生理特性的影响[J].生态环境学报,2016,25(1):60-66. |
ZHAO N, LI F R.Effects of enhanced temperature on the photosynthetic characteristics in different life-form plants[J].Ecology and Environmental Sciences,2016,25(1):60-66. | |
6 | 朱玉,郝立华,黄磊,等.不同温度对3种北高丛蓝莓气孔特征和气体交换参数的影响[J].中国农业大学学报,2016,21(7):43-52. |
ZHU Y, HAO L H, HUANG L,et al.Effects of temperature on leaf stomatal traits and gas exchange of three north highbush blueberry varieties[J].Journal of China Agricultural University,2016,21(7):43-52. | |
7 | YE M, WU M, ZHANG H,et al.High leaf vein density promotes leaf gas exchange by enhancing leaf hydraulic conductance in Oryza sativa L.plants[J].Frontiers in Plant Science,2021,12:693815. |
8 | 李东胜,史作民,冯秋红,等.中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应[J].植物生态学报,2013,37(9):793-802. |
LI D S, SHI Z M, FENG Q H,et al.Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the north-south transect of eastern China[J].Chinese Journal of Plant Ecology,2013,37(9):793-802. | |
9 | 管东旭,田昆,王志保,等.滇西北纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris L.)维管结构对模拟增温的响应[J].生态学杂志,2018,37(9):2611-2618. |
GUAN D X, TIAN K, WANG Z B,et al.Response of vascular structure of a lakeside dominant plant species Hippuris vulgaris L.to simulated warming in Napahai wetland of Northwestern Yunnan[J].Chinese Journal of Ecology,2018,37(9):2611-2618. | |
10 | 冯春慧,孙梅,田昆,等.模拟增温对水葱(Scirpus validus)输导组织的影响[J].东北林业大学学报,2020,48(4):24-28. |
FENG C H, SUN M, TIAN K,et al.Effect of conducting tissue of Scirpus validus to simulated warming[J].Journal of Northeast Forestry University,2020,48(4):24-28. | |
11 | 刘振亚,张晓宁,李丽萍,等.大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响[J].生态学报,2017,37(23):7821-7832. |
LIU Z Y, ZHANG X N, LI L P,et al.Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan[J].Acta Ecologica Sinica,2017,37(23):7821-7832. | |
12 | 许俊萍,田昆,孙梅,等.水葱构件生长对大气CO2浓度升高的响应[J].西南林业大学学报,2016,36(5):84-88. |
XU J P, TIAN K, SUN M,et al.The growth response of Scirpus validus to elevated CO2 [J].Journal of Southwest Forestry University,2016,36(5):84-88. | |
13 | MCPARTLAND M Y, MONTGOMERY R A, HANSON P J,et al.Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland[J].Environmental Research Letters,2020,15(12):124066. |
14 | 管东旭,冯春慧,田昆,等.纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris)茎解剖结构对模拟增温的响应[J].生态学杂志,2019,38(6):1620-1628. |
GUAN D X, FENG C H, TIAN K,et al.Responses of stem anatomical structure of a lakeside dominant plant Hippuris vulgaris to simulated warming in Napahai wetland[J].Chinese Journal of Ecology,2019,38(6):1620-1628. | |
15 | 张依南,张蔚,田昆,等.不同水位下莼菜叶片气孔及光合特性的相关性分析[J].西南林业大学学报(自然科学),2019,39(5):35-42. |
ZHANG Y N, ZHANG W, TIAN K,et al.Correlation analysis of stomatal and photosynthetic characteristics of Brasenia Schreberi leaves under different water levels[J].Journal of Southwest Forestry University(Natural Science),2019,39(5):35-42. | |
16 | ZHAO Y, SUN M, GUO H J,et al.Responses of leaf hydraulic traits of Schoenoplectus tabernaemontani to increasing temperature and CO2 concentrations[J].Botanical Studies,2022,63(1):2. |
17 | 田昆,徐写秋.神奇多彩的高原湿地[J].生命世界,2015(2):4-15. |
TIAN K, XU X Q.Fantastic and colorful plateau wetland[J].Life World,2015(2):4-15. | |
18 | 王海军.川西高寒湿地多源遥感监测及其时空变化特征研究[D].成都:成都理工大学,2021. |
WANG H J.Multi-source remote sensing monitoring and spatial-temporal variation of alpine wetland in western Sichuan[D].Chengdu:Chengdu University of Technology,2021. | |
19 | 杨圆圆.基于遥感技术的若尔盖湿地甲烷时空变化及气候影响研究[D].成都:电子科技大学,2021. |
YANG Y Y.Investigating spatial and temporal variation and climate influence of atmospheric methane concentration at Zoige Wetland,China using remote sensing technology[D].Chengdu:University of Electronic Science and Technology of China,2021. | |
20 | 寇欣.岱海湖泊湖滨带湿地生态系统多功能性维持机理研究[D].呼和浩特:内蒙古大学,2022. |
KOU X.Study on the maintenance mechanism of the ecosystem multifunctionality in littoral zone wetlands of the Daihai Lake[D].Hohhot:Inner Mongolia University,2022. | |
21 | 李晖.区域气候条件变化对高原湿地优势植物光合作用的影响[D].昆明:西南林业大学,2018. |
LI H.Effects of regional climatic conditions change on photosynthesis of dominant plants in plateau wetland[D].Kunming:Southwest Forestry University,2018. | |
22 | 余洪艳,孙梅,冯春慧,等.水葱和香蒲叶经济性状对模拟增温和CO2浓度倍增的响应[J].广西植物,2022:1-17. |
YU H Y, SUN M, FENG C H,et al.Responses of leaf economic traits of Scirpus validus and Typha orientalis to simulated warming and CO2 concentration multiplication[J].Guihaia,2022:1-17. | |
23 | XU J P, SUN M, WANG H,et al.Photosynthetic response of Scirpus validus and Typha orientalis to elevated temperatures in Dianchi Lake,Southwestern China[J].Journal of Mountain Science,2018,15(12):2666-2675. |
24 | IPCC.Climate change 2013:The physical science basis[M].Cambridge:Cambridge University Press,2013:467. |
25 | 吴晓燕,田昆.全球气候变化对高原湿地植物的影响研究[J].绿色科技,2016(10):125-127;132. |
WU X Y, TIAN K.Study on the impact of global climate change on plateau wetland plants[J].Journal of Green Science and Technology,2016(10):125-127;132. | |
26 | TENG L H, LIU H Y, CHU X N,et al.Effect of precipitation change on the photosynthetic performance of phragmites australis under elevated temperature conditions[J].PeerJ,2022,10:e13087. |
27 | 武维华.植物生理学(第三版)[M].北京:科学出版社,2018. |
WU W H.Plant physiology(Third Edition)[M].3rd nd.Beijing:Science Press,2018. | |
28 | MARCHIN R M, BACKES D, OSSOLA A,et al.Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species[J].Global Change Biology,2022,28(3):1133-1146. |
29 | POOLE I, LAWSON T, WEYERS J D B,et al.Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa [J].New Phytologist,2000,145(3):511-521. |
30 | IABO GAMAR M, DIXON S L, QADERI M M.Single and interactive effects of temperature,carbon dioxide and watering regime on plant growth and reproductive yield of two genotypes of Arabidopsis thaliana[J].Acta Physiologiae Plantarum,2021,43(9):124. |
31 | 叶子飘,王怡娟,王令俐,等.大豆叶片光呼吸对光强和CO2浓度的响应[J].生态学杂志,2017,36(9):2535-2541. |
YE Z P, WANG Y J, WANG L L,et al.Response of photorespiration of Glycine max leaves to light intensity and CO2 concentration[J].Chinese Journal of Ecology,2017,36(9):2535-2541. | |
32 | CROUS K Y, ZARAGOZA‐CASTELLS J, ELLSWORTH D S,et al.Light inhibition of leaf respiration in field‐grown Eucalyptus saligna in whole‐tree chambers under elevated atmospheric CO2 and summer drought[J].Plant,Cell & Environment,2012,35(5):966-981. |
33 | WANG Y, CHEN X, XIANG C B.Stomatal density and bio-water saving[J].Journal of Integrative Plant Biology,2007,49(10):1435-1444 |
34 | 牛孟莹,郭辉军,孙梅,等.滇西北挺水植物黑三棱叶形态性状对环境因子的响应[J].西南林业大学学报(自然科学),2022,42(7):84-95. |
NIU N Y, GUO H J, SUN M,et al.Response of leaf morphological traits to environmental factors of an emergent aquatic plant Sparganium stoloniferum in Northwest Yunnan[J].Journal of Southwest Forestry University(Natural Science),2022,42(7):84-95. | |
35 | SUN M, FENG C H, LIU Z Y,et al.Evolutionary correlation of water-related traits between different structures of Dendrobium plants[J].Botanical Studies,2020,61(1):1-14. |
36 | SUN M, YANG S J, ZHANG J L,et al.Correlated evolution in traits influencing leaf water balance in Dendrobium (Orchidaceae)[J].Plant Ecology,2014,215(11):1255-1267. |
37 | SUN J G, LIU C C, HOU J H,et al.Spatial variation of stomatal morphological traits in grassland plants of the Loess Plateau[J].Ecological Indicators,2021,128:107857. |
38 | SELLIN A, ALBER M, JASIŃSKA A K,et al.Adjustment of leaf anatomical and hydraulic traits across vertical canopy profiles of young broadleaved forest stands[J].Trees,2022:67-80. |
39 | BRODRIBB T J, JORDAN G J.Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J].New Phytologist,2011,192(2):437-448. |
40 | XU Z Z, ZHOU G S.Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J].Journal of Experimental Botany,2008,59(12):3317-3325. |
[1] | YIN Liang;LI Shao-Rong;ZHOU Min;WANG Qian*;WU Yan;LUO Peng. Effect of Grazing Interference on the Architecture of Sibiraea angustata in the Eastern Qinghai Tibetan Plateau [J]. Bulletin of Botanical Research, 2010, 30(6): 737-741. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||