Bulletin of Botanical Research ›› 2025, Vol. 45 ›› Issue (1): 3-14.doi: 10.7525/j.issn.1673-5102.2025.01.002
• Review Article • Previous Articles Next Articles
Man MEI1,2,3,4, Chencan WANG5, Hongxia LIN1,2,3,4, Yuqian ZHANG1,2,3,4, Wenjing DING1,2,3,4, Yuanyuan ZHAO1,2,3,4()
Received:
2024-10-10
Online:
2025-01-20
Published:
2025-01-23
Contact:
Yuanyuan ZHAO
E-mail:yyzhao@bjfu.edu.cn
CLC Number:
Man MEI, Chencan WANG, Hongxia LIN, Yuqian ZHANG, Wenjing DING, Yuanyuan ZHAO. Application and Prospect of Spatial Transcriptome Technology in Plant Research[J]. Bulletin of Botanical Research, 2025, 45(1): 3-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2025.01.002
Table 1
Comparison of technical characteristics of different types of spatial transcriptome
技术类型 Technical type | 技术名称 Technical name | 技术特点 Technical characteristics | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|---|
基于激光捕获 显微切割 | LCM-seq | 进行特定区域切割,结合NGS测序获得单细胞转录组数据 | 为分离的区域提供空间信息 | 切割步骤繁琐,低通量 |
GEO-seq | 对组织进行染色、LCM切割,Smart2-seq进行建库及测序 | 比LCM-seq更灵敏 | 切割步骤繁琐,低通量 | |
基于荧光 原位杂交 | FISSEQ | 双碱基测序技术SOLiD原位测序 | 非靶标 | 低检测效率 |
MERFISH | 原位荧光杂交和成像分析 | 高度多元化 | 视野有限,操作复杂 | |
osmFISH | 一种非条形码技术 | 复用能力较低 | 能较好地处理较大组织区域 | |
BaristaSeq | 基于缺口填充挂锁探针进行原位测序 | 读取长度增加到15个碱基 | 视野有限 | |
STARmap | 基于DNA串联测序技术,利用DNA的互补配对原则和荧光染料标记的核苷酸探针进行序列测定 | 能够对完整的组织样本进行3D分析,保留细胞方向性 | 只能应用于100~150 μm厚的切片和较少的目标数量 | |
基于原位 捕获测序 | Visium | 高通量测序结合原位捕获信息,绘制复杂组织样品的空间基因表达图谱 | 可从组织切片中获取细胞的转录组信息及位置信息 | 低分辨率,捕获区域包含多个细胞 |
Slide-seq | 将组织切片贴在带有DNA条形码的玻璃片上进行高通量测序,获得单细胞转录组数据和组织结构信息 | 高通量,高分辨率 | 低灵敏度 | |
HDST | 探针杂交 | 提高空间分辨率 | 高成本,捕获效率低 | |
DbiT-seq | 在切片组织中共同绘制mRNA和蛋白质定位 | 高通量,高分辨率 | 存在微流体扩散 | |
Stereo-seq | 时空捕获芯片,结合原位RNA捕获 | 实现500 nm的分辨率,基因与影像同时分析 | 捕获区域不遵循细胞的复杂轮廓 | |
Seq-Scope | 对mRNA catcher扩增,得到组织不同部位的细胞转录组信息 | 高分辨率 | 相对较低的检测灵敏度 |
Table 2
Application of spatial transcriptome techniques in model species
模式植物物种 Model plant species | 研究内容 Outline of research |
---|---|
拟南芥 Arabidopsis thaliana | 区分上表皮细胞和下表皮细胞之间的转录组差异。发现了从主脉到叶边缘的细胞类型特异性基因表达梯度,发现了维管细胞和保卫细胞的不同空间发育轨迹[ 对拟南芥花序的研究[ 对拟南芥叶片应答细菌攻击的免疫反应途径的研究[ |
水稻 Oryza sativa | 捕获发芽水稻胚胎的空间分辨率单细胞转录组[ 利用空间转录组技术,创建了一个长雄野生稻根状茎的发育图谱[ 揭示了水稻以前未报道的胚胎细胞类型,包括2种未报道的盾壳细胞类型,得到了原位杂交和标记基因功能探索的证实[ 进一步确定了水稻细胞类型的特征、转录组谱和标记基因,并揭示了双子叶植物和单子叶植物之间保守和不同的根发育途径[ |
杨树 Populus | 发现次生维管组织中可能存在形态结构与特征表达基因不同的两类干细胞,分别负责形成韧皮部细胞与木质部细胞,系统解析了植物次生维管组织干细胞的起源发生与发育过程。研究了导管发育过程中生长素分布相关基因的差异表达[ 杨树休眠芽和发育芽空间基因表达特征重现性研究[ |
1 | LISTER R, O’MALLEY R C, TONTI-FILIPPINI J,et al.Highly integrated single-base resolution maps of the epigenome in Arabidopsis [J].Cell,2008,133(3):523-526. |
2 | 张在宝,赵紫微,张佩欣,等.单细胞测序技术在植物中的应用研究进展[J].信阳师范学院学报(自然科学版),2023,36(2):330-337. |
ZHANG Z B, ZHAO Z W, ZHANG P X,et al.Research progress of single-cell sequencing technology in plants[J].Journal of Xinyang Normal University (Natural Science Edition),2023,36(2):330-337. | |
3 | 苗龙,汪文辉,何艮华,等.单细胞转录组测序在植物组织发育研究中的应用[J].农业生物技术学报,2023,31(7):1522-1533. |
MIAO L, WANG W H, HE G H,et al.Application of single-cell RNA sequencing in the study of plant tissues development[J].Journal of Agricultural Biotechnology,2023,31(7):1522-1533. | |
4 | 孙月秋,于年祚,张俊虎.空间转录组学研究进展及其应用[J].分子科学学报,2024,40(2):95-106. |
SUN Y Q, YU N Z, ZHANG J H.Advances and applications in spatial transcriptomics[J].Journal of Molecular Science,2024,40(2):95-106. | |
5 | RHAMAN M S,ALI M, YE W,et al.Opportunities and challenges in advancing plant research with single-cell omics[J].Genomics,Proteomics & Bioinformatics,2024,22(2):qzae026. |
6 | EISENSTEIN M.Seven technologies to watch in 2022[J].Nature,2022,601:658-661. |
7 | MARX V.Method of the Year:spatially resolved transcriptomics[J].Nature Methods,2021,18(1):9-14. |
8 | MA C X, YANG C Z, PENG A,et al.Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenviron-ment[J].Molecular Cancer,2023,22(1):170. |
9 | RAO A, BARKLEY D, FRANCA G S,et al.Exploring tissue architecture using spatial transcriptomics[J].Nature,2021,596(7871):211-220. |
10 | ASP M, BERGENSTRAHLE J, LUNDEBERG J.Spatially resolved transcriptomes-next generation tools for tissue exploration[J].Bioessays,2020,42(10):e1900221. |
11 | HOU X, YANG Y, LI P,et al.Integrating spatial transcriptomics and single-cell RNA-seq reveals the gene expression profiling of the human embryonic liver[J].Frontiers in Cell and Developmental Biology,2021,9:652408. |
12 | NICHTERWITZ S, CHEN G, AGUILA B J,et al.Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling[J].Nature Communications,2016,7:12139. |
13 | CHEN J, SUO S B, TAM P P,et al.Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J].Nature Protocols,2017,12(3):566-580. |
14 | LEE J H, DAUGHARTHY E R, SCHEIMAN J,et al.Highly multiplexed subcellular RNA sequencing in situ[J].Science,2014,343(6177):1360-1363. |
15 | CHEN K H, BOETTIGER A N, MOFFITT J R,et al.Spatially resolved,highly multiplexed RNA profiling in single cells[J].Science,2015,348(6233):aaa6090. |
16 | CODELUPPI S, BORM L E, ZEISEL A,et al.Spatial organization of the somatosensory cortex revealed by osmFISH[J].Nature Methods,2018,15(11):932-935. |
17 | CHEN X Y, SUN Y C, CHURCH G M,et al.Efficient in situ barcode sequencing using padlock probe-based BaristaSeq[J].Nucleic Acids Research,2018,46(4):e22. |
18 | WANG X, ALLEN W E, WRIGHT M A,et al.Three-dimensional intact-tissue sequencing of single-cell transcriptional states[J].Science,2018,361(6400):eaat5691. |
19 | STÅHL P L, SALMÉN F, VICKOVIC S,et al.Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J].Science,2016,353(6294):78-82. |
20 | STICKELS R R, MURRAY E, KUMAR P,et al.Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2[J].Nature Biotechnology,2021,39(3):313-319. |
21 | LIU Y, YANG M Y, DENG Y X,et al.High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue[J].Cell,2020,183(6):1665-1681. |
22 | CHO C S, XI J Y, SI Y C,et al.Microscopic examination of spatial transcriptome using Seq-Scope[J].Cell,2021,184(13):3559-3572. |
23 | YIN R L, XIA K K, XU X.Spatial transcriptomics drives a new era in plant research[J].The Plant Journal,2023,116(6):1571-1581. |
24 | MOSES L, PACHTER L.Museum of spatial transcriptomics[J].Nature Methods,2022,19(5):534-546. |
25 | WATSON E R, TAHERIAN F A, MAR J C.Computational methods for single-cell Imaging and omics data integration[J].Frontiers in Molecular Biosciences,2021,8:768106. |
26 | COX J K L, GURAZADA S G R, DUNCAN K E,et al.Organizing your space:the potential for integrating spatial transcriptomics and 3D imaging data in plants[J].Plant Physiology,2022,188(2):703-712. |
27 | 陆振芳,蒋素华,江敏,等.蝴蝶兰花器官冰冻切片技术探讨[J].河南农业大学学报,2019,53(2):200-206. |
LU Z F, JIANG S H, JIANG M,et al.A study on phalaenopsis floral organ cryo-sectioning technique[J].Journal of Henan Agricultural University,2019,53(2):200-206. | |
28 | SCHMID M W, SCHMIDT A, KLOSTERMEIER U C,et al.A powerful method for transcriptional profiling of specific cell types in eukaryotes:laser-assisted microdissection and RNA sequencing[J].PLoS One,2012,7(1):e29685. |
29 | 贾琪,吴名耀,梁康迳,等.基因组学在作物抗逆性研究中的新进展[J].中国生态农业学报,2014,22(4):375-385. |
JIA Q, WU M Y, LIANG K J,et al.Advances in applications of genomics in stress resistance studies of crops[J].Chinese Journal of Eco-Agriculture,2014,22(4):375-385. | |
30 | 卜娇迪,赵锦,刘孟军.转录组技术及其在植物研究中的应用[Z].保定,2013:100-102. |
BU J D, ZHAO J, LIU M J.Transcriptome technology and its application in plant research[Z].Baoding,2013:100-102. | |
31 | GIACOMELLO S, SALMÉN F, TEREBIENIEC B K,et al.Spatially resolved transcriptome profiling in model plant species[J].Nature Plants,2017,3:17061. |
32 | GIOLAI M, VERWEIJ W, LISTER A,et al.Spatially resolved transcriptomics reveals plant host responses to pathogens[J].Plant Methods,2019,15:114. |
33 | YAO J, CHU Q J, GUO X,et al.Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination[J].Developmental Cell,2024,59(17):2320-2332. |
34 | LIAN X P, ZHONG L Y, BAI Y X,et al.Spatiotemporal transcriptomic atlas of rhizome formation in Oryza longistaminata [J].Plant Biotechnology Journal,2024,22(6):1652-1668. |
35 | ZHANG T Q, CHEN Y, LIU Y,et al.Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root[J].Nature Communications,2021,12(1):2053. |
36 | LIU Y, LI C, HAN Y,et al.Spatial transcriptome analysis on peanut tissues shed light on cell heterogeneity of the peg[J].Plant Biotechnology Journal,2022,20(9):1648-1650. |
37 | DING Y F, CHEN Z, ZHU C.Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa)[J].Journal of Experimental Botany,2011,62(10):3563-3573. |
38 | BLOKHINA O, VALERIO C, SOKOLOWSKA K,et al.Laser capture microdissection protocol for xylem tissues of woody plants[J].Frontiers in Plant Science,2016,7:1965. |
39 | CASSON S, SPENCER M, WALKER K,et al.Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis [J].The Plant Journal,2005,42(1):111-123. |
40 | NAKAZONO M, QIU F, BORSUK L A,et al.Laser-capture microdissection,a tool for the global analysis of gene expression in specific plant cell types:identification of genes expressed differentially in epidermal cells or vascular tissues of maize[J].The Plant Cell,2003, 15(3):583-596. |
41 | SHINOZAKI Y, NICOLAS P, FERNANDEZ-POZO N,et al.High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening[J].Nature Communications,2018,9(1):364. |
42 | BRADY S M, ORLANDO D A, LEE J Y,et al.A high-resolution root spatiotemporal map reveals dominant expression patterns[J].Science,2007,318(5851):801-806. |
43 | BIRNBAUM K, JUNG J W, WANG J Y,et al.Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines[J].Nature Methods,2005,2(8):615-619. |
44 | NITTA N, SUGIMURA T, ISOZAKI A,et al.Intelligent image-activated cell sorting[J].Cell,2018,175(1):266-276. |
45 | MORENO-ROMERO J, SANTOS-GONZÁLEZ J, HENNIG L,et al.Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles[J].Nature Protocols,2017,12(2):238-254. |
46 | ZHANG T Q, XU Z G, SHANG G D,et al.A single-cell rna sequencing profiles the developmental landscape of Arabidopsis root[J].Molecular Plant,2019,12(5):648-660. |
47 | LIU C, LENG J, LI Y L,et al.A spatiotemporal atlas of organogenesis in the development of orchid flowers[J].Nucleic Acids Research,2022,50(17):9724-9737. |
48 | DU J, WANG Y C, CHEN W F,et al.High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem[J].Molecular Plant,2023, 16(5):809-828. |
49 | GUO J, LUO D, CHEN Y M,et al.Spatiotemporal transcriptome atlas reveals gene regulatory patterns during the organogenesis of the rapid growing bamboo shoots[J].The New Phytologist,2024,244(3):1057-1073. |
50 | ZHANG B X, ZHANG H L, XIA Y J.Harnessing spatial transcriptomics for advancing plant regeneration res-earch[J].Trends in Plant Science,2024,29(7):718-720. |
51 | SONG X H, GUO P R, XIA K K,et al.Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus[J]. Proceedings of the National Academy of Sciences of the United States of America,2023,120(38):e2310163120. |
52 | WANG Y B, LUO Y, GUO X,et al.A spatial transcriptome map of the developing maize ear[J].Nature Plants,2024,10(5):815-827. |
53 | YU X N, XIE L J, GE J J,et al.Integrating single-cell RNA-seq and spatial transcriptomics reveals MDK-NCL dependent immunosuppressive environment in endometrial carcinoma[J].Frontiers in Immunology,2023,14:1145300. |
54 | SHAHAN R, NOLAN T M, BENFEY P N.Single-cell analysis of cell identity in the Arabidopsis root apical meristem:insights and opportunities[J].Journal of Experimental Botany,2021,72(19):6679-6686. |
55 | JOVIC D, LIANG X, ZENG H,et al.Single-cell RNA sequencing technologies and applications:a brief overview[J].Clinical and Translational Medicine,2022,12(3):e694. |
56 | XIA K K, SUN H X, LI J,et al.The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves[J].Developmental Cell,2022,57(10):1299-1310. |
57 | CHEN X P, ZHU W, AZAM S,et al.Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion[J].Plant Biotechnology Journal,2013,11(1):115-127. |
58 | MORENO-VILLENA J J, ZHOU H, GILMAN I S,et al.Spatial resolution of an integrated C4+CAM photosynthetic metabolism[J].Science Advances,2022,8(31):eabn2349. |
59 | FU Y X, XIAO W X, TIAN L,et al.Author Correction:spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development[J].Nature Communications,2024:15,279. |
60 | JIANG N, YAN J, LIANG Y,et al.Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.) - an updated review[J].Rice,2020,13(1):3. |
61 | NOMAN M, AHMED T, IJAZ U,et al.Plant-microbiome crosstalk:dawning from composition and assembly of microbial community to improvement of disease resilience in plants[J].International Journal of Molecular Sciences,2021,22(13):6852. |
62 | LIU Z J, KONG X Y, LONG Y P,et al.Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation[J].Nature Plants,2023,9(4):515-524. |
63 | SERRANO K, TEDESCHI F, ANDERSEN S U,et al.Unraveling plant-microbe symbioses using single-cell and spatial transcriptomics[J].Trends in Plant Science,2024,29(12):1356-1367. |
64 | SERRANO K, BEZRUTCZYK M, GOUDEAU D,et al.Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis[J].Nature Plants,2024,10(4):673-688. |
65 | SAARENPÄÄ S, SHALEV O, ASHKENAZY H,et al.Spatial metatranscriptomics resolves host-bacteria-fungi interactomes[J].Nature Biotechnology,2024,42:1384-1393. |
66 | MOLLA K A, KARMAKAR S, MOLLA J,et al.Understanding sheath blight resistance in rice:the road behind and the road ahead[J].Plant Biotechnology Journal,2020,18(4):895-915. |
67 | GURAZADA S G R, COX K L, CZYMMEK K J,et al.Space:the final frontier - achieving single-cell,spatially resolved transcriptomics in plants[J].Emerging Topics in Life Sciences,2021,5(2):179-188. |
68 | LEE J, YOO M, CHOI J.Recent advances in spatially resolved transcriptomics:challenges and opportunities[J].Bmb Reports,2022,55(3):113-124. |
[1] | WANG Yan-Hong, ZHANG Xue-Jie, FAN Shou-Jin. Micromorphology of Leaf Epidermis of Phleum [J]. Bulletin of Botanical Research, 2016, 36(6): 827-837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||