Bulletin of Botanical Research ›› 2022, Vol. 42 ›› Issue (1): 151-160.doi: 10.7525/j.issn.1673-5102.2022.01.016
• Research Report • Previous Articles
Xinggang Tang1, Yingdan Yuan2, Jinchi Zhang1()
Received:
2020-09-16
Online:
2022-01-20
Published:
2021-12-30
Contact:
Jinchi Zhang
E-mail:zhangjc8811@gmail.com
About author:
Tang Xinggang(1997—),male,master,main research direction are soil and water conservation and forestry ecological engineering.
Supported by:
CLC Number:
Xinggang Tang, Yingdan Yuan, Jinchi Zhang. Effects of Climate Change on the Suitable Area and Niche of Cunninghamia lanceolata[J]. Bulletin of Botanical Research, 2022, 42(1): 151-160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://bbr.nefu.edu.cn/EN/10.7525/j.issn.1673-5102.2022.01.016
Table 1
Environmental variables
气候变量Climate variables | |
---|---|
Bio1 Annual Mean Temperature年均温▲ Bio2 Mean Diurnal Range昼夜温差日均值▲ Bio3 Isothermality等温性▲ Bio4 Temperature Seasonality温度季节性变化标准差 Bio5 Max Temperature of Warmest Month最暖月最高温▲ Bio6 Min Temperature of Coldest Month最冷月最低温 Bio7 Temperature Annual Range年均温变化范围▲ Bio8 Mean Temperature of Wettest Quarter最湿季均温▲ Bio9 Mean Temperature of Driest Quarter最干季平均温 Bio10 Mean Temperature of Warmest Quarte最暖季平均温 | Bio11 Mean Temperature of Coldest Quarter最冷季平均温 Bio12 Annual Precipitation年均降雨量▲ Bio13 Precipitation of Wettest Month最湿月降雨量 Bio14 Precipitation of Driest Month最干月降雨量▲ Bio15 Precipitation Seasonality降雨量变异系数▲ Bio16 Precipitation of Wettest Quarter最湿季降雨量 Bio17 Precipitation of Driest Quarter最干季降雨量 Bio18 Precipitation of Warmest Quarter最暖季降雨量▲ Bio19 Precipitation of Coldest Quarter最冷季降雨量 Elevation海拔▲ |
Fig.4
Future niche changes of C. lanceolata under different climatic backgroundThe PCA-env method is used to calculate the multivariate climate space,PC1 and PC2 represent the first two axes of principal component analysis (PCA);The green and red shadings represent density of species occurrences in current and future scenario, and blue means overlap;The solid and dashed contour lines illustrate 100% and 50% of the available environmental space,respectively;Red arrows mark how the climatic niche(solid line) of C. lanceolata and the center of the background range(dashed line) move between the two ranges
1 | Dawson T P,Jackson S T,House J I,et al.Beyond predictions:biodiversity conservation in a changing climate[J].Science,2011,332(6025):53-58. |
2 | 黎磊,陈家宽.气候变化对野生植物的影响及保护对策[J].生物多样性,2014,22(5):549-563. |
Li L,Chen J K.Influence of climate change on wild plants and the conservation strategies[J].Biodiversity Science,2014,22(5):549-563. | |
3 | Elliott M,Borja Á,Mcquatters-Gollop A,et al.Force majeure:will climate change affect our ability to attain Good Environmental Status for marine biodiversity?[J].Marine Pollution Bulletin,2015,95(1):7-27. |
4 | 吴军,徐海根,陈炼.气候变化对物种影响研究综述[J].生态与农村环境学报,2011,27(4):1-6. |
Wu J,Xu H G,Chen L.A review of impacts of climate change on species[J].Journal of Ecology and Rural Environment,2011,27(4):1-6. | |
5 | Kozak K H,Graham C H,Wiens J J.Integrating GIS-based environmental data into evolutionary biology[J].Trends in Ecology & Evolution,2008,23(3):141-148. |
6 | Prevéy J S,Parker L E,Harrington C A,et al.Climate change shifts in habitat suitability and phenology of huckleberry(Vaccinium membranaceum)[J].Agricultural and Forest Meteorology,2020,280:107803. |
7 | Al-Qaddi N,Vessella F,Stephan J,et al.Current and future suitability areas of kermes oak(Quercus coccifera L.) in the Levant under climate change[J].Regional Environmental Change,2017,17(1):143-156. |
8 | Bellard C,Bertelsmeier C,Leadley P,et al.Impacts of climate change on the future of biodiversity[J].Ecology Letters,2012,15(4):365-377. |
9 | Weltzin J F,Bridgham S D,Pastor J,et al.Potential effects of warming and drying on peatland plant community composition[J].Global Change Biology,2003,9(2):141-151. |
10 | 翁恩生,周广胜.用于全球变化研究的中国植物功能型划分[J].植物生态学报,2005,29(1):81-97. |
Weng E S,Zhou G S.Defining plant functional types in China for global change studies[J].Acta Phytoecologica Sinica,2005,29(1):81-97. | |
11 | Anderson R P.A framework for using niche models to estimate impacts of climate change on species distributions[J].Annals of the New York Academy of Sciences,2013,1297(1):8-28. |
12 | Mantyka-Pringle C S,Martin T G,Rhodes J R.Interactions between climate and habitat loss effects on biodiversity:a systematic review and meta‐analysis[J].Global Change Biology,2013,19(5):1642-1644. |
13 | Xu K,Wang X P,Jiang C,et al.Assessing the vulnerability of ecosystems to climate change based on climate exposure,vegetation stability and productivity[J].Forest Ecosystems,2020,7(3):315-326. |
14 | Wiegand T,Moloney K A.Rings,circles,and null‐models for point pattern analysis in ecology[J].Oikos,2004,104(2):209-229. |
15 | Law R,Illian J,Burslem D F R P,et al.Ecological information from spatial patterns of plants:insights from point process theory[J].Journal of Ecology,2009,97(4):616-628. |
16 | Bi J,Blanco J A,Seely B,et al.Yield decline in Chinese-fir plantations:a simulation investigation with implications for model complexity[J].Canadian Journal of Forest Research,2007,37(9):1615-1630. |
17 | 晏姝,胡德活,郑会全,等.16年生杉木2代种子园家系区域测定分析[J].森林与环境学报,2018,38(4):414-418. |
Yan S,Hu D H,Zheng H Q,et al.Regional experiment on 16-year-old families of the 2nd generation seed orchard of Cunninghamia lanceolata[J].Journal of Forest and Environment,2018,38(4):414-418. | |
18 | 覃祚玉,唐健,曹继钊,等.基于主成分和聚类分析相结合的连栽杉木土壤肥力评价[J].林业资源管理,2015(5):81-87. |
Qin Z Y,Tang J,Cao J Z,et al.Assessment of soil fertility of continuous plantation of Chinese fir based on principal component and cluster analysis[J].Forest Resources Management,2015(5):81-87. | |
19 | 杨桂娟,胡海帆,孙洪刚,等.林分年龄、造林密度和林分自然稀疏对杉木人工林个体大小分化和生产力关系的影响[J].林业科学,2019,55(11):126-136. |
Yang G J,Hu H F,Sun H G,et al.The influences of stand age,planting density and self-thinning on relationship between size inequality and periodic annual increment in Chinese fir(Cunninghamia lanceolata) plantations[J].Scientia Silvae Sinicae,2019,55(11):126-136. | |
20 | Rao K K,Patwardhan S K,Kulkarni A,et al.Projected changes in mean and extreme precipitation indices over India using PRECIS[J].Global and Planetary Change,2014,113:77-90. |
21 | 姜大膀,富元海.2 ℃全球变暖背景下中国未来气候变化预估[J].大气科学,2012,36(2):234-246. |
Jiang D B,Fu Y H.Climate change over China with a 2 ℃ global warming[J].Chinese Journal of Atmospheric Sciences,2012,36(2):234-246. | |
22 | Yu H,Cooper A R,Infante D M.Improving species distribution model predictive accuracy using species abundance:application with boosted regression trees[J].Ecological Modelling,2020,432:109202. |
23 | Kass J M,Vilela B,Aiello‐Lammens M E,et al.Wallace:a flexible platform for reproducible modeling of species niches and distributions built for community expansion[J].Methods in Ecology and Evolution,2018,9(4):1151-1156. |
24 | Di Cola V,Broennimann O,Petitpierre B,et al.Ecospat:an R package to support spatial analyses and modeling of species niches and distributions[J].Ecography,2017,40(6):774-787. |
25 | 李宏群,刘晓莉,汪建华,等.基于MaxEnt模型荔枝在中国的潜在种植区预测[J].长江流域资源与环境,2020,29(2):394-400. |
Li H Q,Liu X L,Wang J H,et al.Prediction on potential planting area of Litchi chinensis in China by using MaxEnt model[J].Resources and Environment in the Yangtze Basin,2020,29(2):394-400. | |
26 | Zhang M G,Slik J W F,Ma K P.Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China[J].Scientific Reports,2016,6(1):22400. |
27 | 郭杰,刘小平,张琴,等.基于MaxEnt模型的党参全球潜在分布区预测[J].应用生态学报,2017,28(3):992-1000. |
Guo J,Liu X P,Zhang Q,et al.Prediction for the potential distribution area of Codonopsis pilosula at global scale based on MaxEnt model[J].Chinese Journal of Applied Ecology,2017,28(3):992-1000. | |
28 | 谭钰凡,左小清.基于GIS与MaxEnt模型的金花茶潜在适生区与保护研究[J].热带亚热带植物学报,2018,26(1):24-32. |
Tan Y F,Zuo X Q.Studies on potential suitable growth areas and protection of Camellia nitidissima based on GIS and MaxEnt model[J].Journal of Tropical and Subtropical Botany,2018,26(1):24-32. | |
29 | 朱耿平,范靖宇,王梦琳,等.ROC曲线形状在生态位模型评价中的重要性—以美国白蛾为例[J].生物安全学报,2017,26(3):184-190. |
Zhu G P,Fan J Y,Wang M L,et al.The importance of the shape of receiver operating characteristic(ROC) curve in ecological niche model evaluation—case study of Hlyphantria cunea[J].Journal of Biosafety,2017,26(3):184-190. | |
30 | Broennimann O,Fitzpatrick M C,Pearman P B,et al.Measuring ecological niche overlap from occurrence and spatial environmental data[J].Global Ecology and Biogeography,2012,21(3-4):481-497. |
31 | 王哲,李波,肖井雷,等.基于MaxEnt和ArcGIS的吉林省穿龙薯蓣分布区划研究[J].中国中药杂志,2017,42(22):4373-4377. |
Wang Z,Li B,Xiao J L,et al.Regionalization study of Dioscorea nipponica in Jilin province based on MaxEnt and ArcGIS[J].China Journal of Chinese Materia Medica,2017,42(22):4373-4377. | |
32 | 付永硕,李昕熹,周轩成,等.全球变化背景下的植物物候模型研究进展与展望[J].中国科学:地球科学,2020,50(9):1206-1218. |
Fu Y S,Li X X,Zhou X C,et al.Progress in plant phenology modeling under global climate change[J].Science China Earth Sciences,2020,63(9):1237-1247. | |
33 | Zhang K L,Zhang Y,Zhou C,et al.Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt[J].Ecological Informatics,2019,50:62-67. |
34 | Li H Q,Liu X H,Wang J H,et al.Maxent modelling for predicting climate change effects on the potential planting area of tuber mustard in China[J].The Journal of Agricultural Science,2019,157(5):375-381. |
35 | 郭飞龙,徐刚标,牟虹霖,等.伯乐树潜在地理分布时空格局模拟[J].植物科学学报,2020,38(2):185-194. |
Guo F L,Xu G B,Mou H L,et al.Simulation of potential spatiotemporal population dynamics of Bretschneidera sinensis Hemsl.based on MaxEnt model[J].Plant Science Journal,2020,38(2):185-194. | |
36 | Hamid M,Khuroo A A,Charles B,et al.Impact of climate change on the distribution range and niche dynamics of Himalayan birch,a typical treeline species in Himalayas[J].Biodiversity and Conservation,2019,28(1):2345-2370. |
37 | Villaverde T,González-Moreno P,Rodríguez-Sánchez F,et al.Niche shifts after long‐distance dispersal events in bipolar sedges(Carex,Cyperaceae)[J].American Journal of Botany,2017,104(11):1765-1774. |
38 | 申关望,沈光辉,扶定.城市行道树杉木栽培技术及应用[J].现代农村科技,2013(17):52. |
Shen G W,Shen G H,Fu D.Cultivation technology and application of urban street tree Cunninghamia lanceolata[J].Modern Rural Science and Technology,2013(17):52. | |
39 | 江一帆,李明阳,刘雅楠,等.气候变化对湖南省马尾松适宜生境影响分析[J].南京林业大学学报:自然科学版,2019,43(4):94-100. |
Jiang Y F,Li M Y,Liu Y N,et al.Impact of climate change on suitable habitats of Pinus massoniana in Hunan province[J].Journal of Nanjing Forestry University:Natural Sciences Edition,2019,43(4):94-100. | |
40 | 吕振刚,李文博,黄选瑞,等.气候变化情景下河北省3个优势树种适宜分布区预测[J].林业科学,2019,55(3):13-21. |
Lü Z G,Li W B,Huang X R,et al.Predicting suitable distribution area of three dominant tree species under climate change scenarios in Hebei province[J].Scientia Silvae Sinicae,2019,55(3):13-21. | |
41 | 张殷波,高晨虹,秦浩.山西翅果油树的适生区预测及其对气候变化的响应[J].应用生态学报,2018,29(4):1156-1162. |
Zhang Y B,Gao C H,Qin H.Prediction of the suitable distribution and responses to climate change of Elaeagnus mollis in Shanxi province,China[J].Chinese Journal of Applied Ecology,2018,29(4):1156-1162. | |
42 | 胡秀,郭微,吴福川,等.MaxEnt生态学模型在野生植物近自然林引种区划中的应用——以红姜花为例[J].广西植物.2015,35(3):325-330. |
Hu X,Guo W,Wu F C,et al.Application of MaxEnt ecology model in near-nature forestry plant introduction regionalization with Hedychium coccineum as an example[J].Guihaia,2015,35(3):325-330. | |
43 | Zhang K L,Zhang Y,Zhou C,et al.Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt[J].Ecological Informatics,2019,50(1):62-67. |
44 | 徐思远,李斌成,田浩园,等.连香树在东南亚潜在分布区预测与分析[J].山西农业大学学报:自然科学版,2020,40(4):104-110. |
Xu S Y,Li B C,Tian H Y,et al.Simulation and analysis of the potential distribution area of Cercidiphyllum japonicum in Southeast Asia[J].Journal of Shanxi Agricultural University:Natural Science Edition,2020,40(4):104-110. | |
45 | 秦思思,颜玉娟,欧阳晟.基于MAXENT模型和ArcGIS预测蜡梅适生域在中国的潜在分布[J].生态科学,2020,39(3):49-56. |
Qin S S,Yan Y J,Ouyang S.Prediction of the potential distribution of Chimonanthus praecox in China based on MAXENT model and ArcGIS[J].Ecological Science,2020,39(3):49-56. | |
46 | Walter C,Rossel R A V,Mcbratney A B.Spatio-temporal simulation of the field-scale evolution of organic carbon over the landscape[J].Soil science society of America Journal,2003,67(5):1477-1486. |
[1] | LI Ning-Ning, ZHANG Ai-Ping, ZHANG Lin, WANG Ke-Qing, LUO Hong-Yan, PAN Kai-Wen. Predicting Potential Distribution of Two Species of Spruce in Qinghai-Tibet Plateau under Climate Change [J]. Bulletin of Botanical Research, 2019, 39(3): 395-406. |
[2] | ZHOU Ze-Jian, LIU Ni-Ni, WU Bing-Qian, ZHANG Hong, ZHAO Heng. Allelopathic Effects of Leaves Extracts on Growth of Three Fast-growing Tree Species on Ardisia gigantifolia Staf Seedlings [J]. Bulletin of Botanical Research, 2018, 38(4): 568-574. |
[3] | LIU Ran, WANG Chun-Jing, HE Jian, ZHANG Zhi-Xiang. Analysis of Geographical Distribution of Abies in China under Climate Change [J]. Bulletin of Botanical Research, 2018, 38(1): 37-46. |
[4] | YUAN Bo;BAI Hong-Ying*;ZHANG Jie;MA Xin-Ping. Vegetation Net Primary Productivity in Qinling Mountains and Its Response to Climate Change [J]. Bulletin of Botanical Research, 2013, 33(2): 225-231. |
[5] | Jiang Nai-zhun, Duan Wen-biao. THE FUTURE CLIMATE CHANGE AND ITS INFLUENCES TO FOREST IN HEILONGJIANG PROVINCE [J]. Bulletin of Botanical Research, 1996, 16(2): 242-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||