植物研究 ›› 2026, Vol. 46 ›› Issue (1): 1-12.doi: 10.7525/j.issn.1673-5102.2026.01.001
• 综述文章 • 下一篇
收稿日期:2025-08-29
出版日期:2026-01-20
发布日期:2026-01-20
通讯作者:
宋洪元
E-mail:yuahs@163.com
作者简介:何林林(2000—),女,硕士研究生,主要从事甘蓝种质资源挖掘与分子育种研究。
基金资助:
Linlin HE, Lei WU, Xuesong REN, Jun SI, Qinfei LI, Hongyuan SONG(
)
Received:2025-08-29
Online:2026-01-20
Published:2026-01-20
Contact:
Hongyuan SONG
E-mail:yuahs@163.com
摘要:
STAY-GREEN(SGR)基因家族是调控植物叶绿素降解及叶片衰老的关键因子。该文对SGR基因家族进行系统进化分析,结果表明,该家族可分为SGR和SGRL 2个功能分化的亚家族,其成员数量在物种间存在差异,但蛋白结构高度保守。功能研究表明,SGR基因不仅通过调控叶绿素降解在植物生长发育中发挥核心作用,还广泛参与植物对非生物胁迫和生物胁迫的响应,且其功能常具有基因特异性。在分子机制层面,SGR基因作为枢纽节点,整合了脱落酸、乙烯、茉莉酸等激素信号,并通过调节活性氧代谢稳态和苯丙烷代谢途径,协同调控叶绿素降解与胁迫应答。该文系统地梳理了SGR基因介导的复杂调控网络,为深入解析其分子机理及利用基因编辑等技术靶向改良作物抗逆性和农产品品质提供重要的理论依据与研究方向。
中图分类号:
何林林, 吴磊, 任雪松, 司军, 李勤菲, 宋洪元. 滞绿基因SGR研究进展[J]. 植物研究, 2026, 46(1): 1-12.
Linlin HE, Lei WU, Xuesong REN, Jun SI, Qinfei LI, Hongyuan SONG. Progress in the Study on Stay-green Gene SGR[J]. Bulletin of Botanical Research, 2026, 46(1): 1-12.
表1
不同物种 SGR 同源基因列表
物种 Species | 基因名称 Gene name | 登录号/基因ID Accession number/Gene ID |
|---|---|---|
水稻 Oryza sativa | OsSGR | NP_001063758 |
| OsSGRL | NP_001054370 | |
玉米 Zea mays | ZmSGR1 | ACG27475 |
| ZmSGR2 | NP_001105771 | |
| ZmSGRL | NP_001130909 | |
高粱 Sorghum bicolor | SbSGR | AAW82958 |
| SbSGRL | XP_002448084 | |
苜蓿 Medicago sativa | MtSGR | AEE0020 |
烟草 Nicotiana tabacum | NtSGR | ABY19382 |
豌豆 Pisum sativum | PsSGR | BAF76351 |
拟南芥 Arabidopsis thaliana | AtSGR1 | At4g22920 |
| AtSGR2 | At4g11910 | |
| AtSGRL | At1g44000 | |
番茄 Solanum lycopersicum | SlSGR1 | Solyc08g080090.2.1 |
| SlSGR2 | Solyc12g056480.1.1 | |
| SlSGRL | Solyc04g063240.2.1 | |
大豆 Glycine max | GmSGR1 | Glyma11g02980.1 |
| GmSGR2 | Glyma01g42390.1 | |
| GmSGR3a | Glyma17g14201.2 | |
| GmSGR3b | Glyma17g14210.2 | |
| GmSGRL | XP_003523416 | |
甘蓝 Brassica oleracea var. capitata | BoSGR1-C01/C03/C07 | Bol014983/Bol010654/Bol042063 |
| BoSGR2-C03 | Bol030516 | |
| BoSGRL-Scaffold000269 | Bol006958 | |
欧洲油菜 B. napus | BnaSGR1a-A01 | BnaA01g12570D |
| BnaSGR1b-A01 | BnaA01g22870D | |
| BnaSGR1-A03/A08 | BnaA03g45630D/BnaA08g10510D | |
| BnaSGR1-Cnn | BnaCnng29210D | |
| BnaSGR1-C01/C07 | BnaC0lg14360D/BnaC07g37710D | |
| BnaSGR2-A03/C03 | BnaA03g24900D/BnaC03g72930D | |
| BnaSGRL-A10/CO6 | BnaA10g08850D/BnaC06g00560D | |
白菜 B. rapa | BraSGRla-A01 | Bra013656 |
| BraSGR1b-A01 | Bra028385 | |
| BraSGR1-A03/A08 | Bra019346/Bra020829 | |
| BraSGR2-A03 | Bra000755 | |
| BraSGRL-Scaffold000123 | Bra036938 |
| [1] | ZHAO W X, ZHAO H Y, WANG H S,et al.Research progress on the relationship between leaf senescence and quality,yield and stress resistance in horticultural plants[J].Frontiers in Plant Science,2022,13:1044500. |
| [2] | VOMDORP K, HÖLZL G, PLOHMANN C,et al.Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis [J].The Plant Cell,2015,27(10):2846-2859. |
| [3] | THOMAS H, HOWARTH C J.Five ways to stay green[J].Journal of Experimental Botany,2000,51(Sup.1):329-337. |
| [4] | HÖRTENSTEINER S.Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence[J].Trends in Plant Science,2009,14(3):155-162. |
| [5] | KUSABA M, ITO H, MORITA R,et al.Rice NON-YELLOW COLORING1 is involved in light-harvesting complex Ⅱ and grana degradation during leaf senescence[J].The Plant Cell,2007,19(4):1362-1375. |
| [6] | SATO Y, MORITA R, KATSUMA S,et al.Two short-chain dehydrogenase/reductases,NON-YELLOW COLORING 1 and NYC1-LIKE,are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice[J].The Plant Journal,2009,57(1):120-131. |
| [7] | REN G D, ZHOU Q, WU S X,et al.Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis [J].Journal of Integrative Plant Biology,2010,52(5): 496-504. |
| [8] | MEGURO M, ITO H, TAKABAYASHI A,et al.Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis [J].The Plant Cell,2011,23(9):3442-3453. |
| [9] | MORITA R, SATO Y, MASUDA Y,et al.Defect in non-yellow coloring 3,an alpha/beta hydro-lase-fold family protein,causes a stay-green phenotype during leaf senescence in rice[J].The Plant Journal,2009,59(6):940-952. |
| [10] | PRUŽINSKÁ A, TANNER G, ANDERS I,et al.Chlorophyll breakdown: pheophorbide a oxygenase is a rieske-type iron-sulfur protein,encoded by the accelerated cell death 1 gene[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(25):15259-15264. |
| [11] | PRUŽINSKÁ A, ANDERS I, AUBRY S,et al. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown[J].The Plant Cell,2007,19(1):369-387. |
| [12] | GUO Y F, REN G D, ZHANG K W,et al.Leaf senescence:progression,regulation,and application[J].Molecular Horticulture,2021,1(1):5. |
| [13] | 唐蕾,毛忠贵.植物叶绿素降解途径及其分子调控[J].植物生理学报,2011,47(10):936-942. |
| TANG L, MAO Z G.Degradation pathway of plant chlorophyll and its molecular regulation[J].Plant Physiology Journal,2011,47(10):936-942. | |
| [14] | KUAI B K, CHEN J Y, HÖRTENSTEINER S.The biochemistry and molecular biology of chlorophyll breakdown[J].Journal of Experimental Botany,2018,69(4):751-767. |
| [15] | REN G D, AN K, LIAO Y,et al.Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis [J].Plant Physiology,2007,144(3):1429-1441. |
| [16] | PARK S Y, YU J W, PARK J S,et al.The senescence-induced stay-green protein regulates chlorophyll degradation[J].The Plant Cell,2007,19(5):1649-1664. |
| [17] | SATO Y, MORITA R, NISHIMURA M,et al.Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104 (35):14169-14174. |
| [18] | HU Z L, DENG L, YAN B,et al.Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype[J].Biologia Plantarum,2011,55(1):27-34. |
| [19] | ROCA M, HORNERO-MÉNDEZ D, GANDUL-ROJAS B,et al.Stay-green phenotype slows the carotenogenic process in Capsicum annuum(L.) fruits[J].Journal of Agricultural and Food Chemistry,2006,54(23):8782-8787. |
| [20] | WEI Q, GUO Y J, KUAI B K.Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue[J].Plant Cell Reports,2011,30(7):1201-1207. |
| [21] | XU B, YU G H, LI H,et al.Knockdown of STAYGREEN in perennial ryegrass(Lolium perenne L.) leads to transcriptomic alterations related to suppressed leaf senescence and improved forage quality[J].Plant & Cell Physiology,2019,60(1):202-212. |
| [22] | FANG C, LI C C, LI W Y,et al.Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean[J].The Plant Journal,2014,77(5):700-712. |
| [23] | WANG N, LIU Z Y, ZHANG Y,et al.Identification and fine mapping of a stay-green gene(Brnye1) in pak choi (Brassica campestris L.ssp.chinensis) [J].Theoretical and Applied Genetics,2018,131(3):673-684. |
| [24] | ZHOU C E, HAN L, PISLARIU C,et al.From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement[J].Plant Physiology,2011,157(3):1483-96. |
| [25] | CUI L, ZHENG F Y, LI C X,et al.Defective mutations in STAY-GREEN 1,PHYTOENE SYNTHASE 1,and MYB12 genes lead to formation of green ripe fruit in tomato[J].Journal of Experimental Botany,2024,75(11):3322-3336. |
| [26] | BAO Q Y, WOLABU T W, ZHANG Q,et al.Application of CRISPR/Cas9 technology in forages[J].Grassland Research,2022,1(4):244-251. |
| [27] | WOLABU T W, CONG L L, PARK J J,et al.Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa(Medicago sativa)[J].Frontiers in Plant Science,2020,11:1063. |
| [28] | JIAO B Z, MENG Q W, LV W.Roles of stay-green (SGR) homologs during chlorophyll degradation in green plants[J].Botanical Studies,2020,61(1):25. |
| [29] | RONG H, TANG Y Y, ZHANG H,et al.The Stay-Green Rice like(SGRL) gene regulates chlorophyll degradation in rice[J].Journal of Plant Physiology,2013,170(15):1367-1373. |
| [30] | WANG Y H, TAN J Y, WU Z M,et al.STAYGREEN,STAY HEALTHY:a loss-of-susceptibility mutation in the STAYGREEN gene provides durable,broad-spectrum disease resistances for over 50 years of US cucumber production[J].The New Phytologist,2019,221(1):415-430. |
| [31] | ULUISIK S, KIYAK A, KURT F,et al. STAY-GREEN (SGR) genes in tomato(Solanum lycopersicum):genome-wide identification,and expression analyses reveal their involvements in ripening and salinity stress responses[J].Horticulture,Environment,and Biotechnology,2022,63:557-569. |
| [32] | BADE R G, BAO M L, JIN W Y,et al.Genome-wide identification and analysis of the SGR gene family in Cucumis melo L.[J].Genetics and Molecular Research,2016,15(4):gmr15048485. |
| [33] | NAKANO M, YAMADA T, MASUDA Y,et al.A green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean[J].Plant & Cell Physiology,2014,55(10):1763-1771. |
| [34] | 唐玉凤,姚敏,何昕,等.甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J].作物学报,2023,49(7):1829-1842. |
| TANG Y F, YAO M, HE X,et al.Genome-wide identification and functional analysis of SGR gene family in Brassica napus L.[J].Acta Agronomica Sinica,2023,49(7):1829-1842. | |
| [35] | FANG C, YANG M Y, TANG Y C,et al.Dynamics of cis-regulatory sequences and transcriptional divergence of duplicated genes in soybean[J].Proceedings of the National Academy of Sciences of the United States of America,2023,120(44):e2303836120. |
| [36] | LIU T F, LIU Z, FAN J W,et al.Loss of lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae[J].Genome Biology,2024,25(1):250. |
| [37] | XIE Z K, WU S D, CHEN J Y,et al.The C-terminal cysteine-rich motif of NYE1/SGR1 is indispensable for its function in chlorophyll degradation in Arabidopsis [J].Plant Molecular Biology,2019,101(3):257-268. |
| [38] | SHI S Y, MIAO H Y, DU X M,et al. GmSGR1,a stay-green gene in soybean(Glycine max L.),plays an important role in regulating early leaf-yellowing phenotype and plant productivity under nitrogen deprivation[J].Acta Physiologiae Plantarum,2016,38:97. |
| [39] | 惠振.小麦滞绿突变体TaSG1的光合特性及其滞绿机理研究[D].泰安:山东农业大学,2009. |
| HUI Z.The photosynthetic characteristic of TaSG1 wheat mutant with stay-green phenotype and the physiological mechanism responsible for stay-green[D].Tai’an:Shandong Agricultural University,2009. | |
| [40] | BARRY C S, MCQUINN R P, CHUNG M Y,et al.Amino acid substitutions in homologs of theSTAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper[J].Plant Physiology,2008,147(1):179-187. |
| [41] | SAKURABA Y, SCHELBERT S, PARK S Y,et al.STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complexII for chlorophyll detoxification during leaf senescence in Arabidopsis [J].The Plant Cell,2012,24(2):507-518. |
| [42] | SAKURABA Y, PARK S Y, KIM Y S,et al. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence[J].Molecular Plant,2014,7(8):1288-1302. |
| [43] | ZHANG Y T, WEI G Q, XUE J Y,et al. CfSGR1 and CfSGR2 from Cryptomeria fortunei exhibit contrasting responses to hormones and abiotic stress in transgenic Arabidopsis [J].Plant Physiology and Biochemistry,2024,216:109152. |
| [44] | SAKURABA Y, KIM D, KIM Y S,et al. Arabidopsis STAYGREEN-LIKE(SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth[J].FEBS Letters,2014,588(21):3830-3837. |
| [45] | BELL A, MOREAU C, CHINOY C,et al.SGRL can regulate chlorophyll metabolism and contributes to normal plant growth and development in Pisum sativum L.[J].Plant Molecular Biology,2015,89(6):539-558. |
| [46] | YANG M M, ZHU S B, JIAO B Z,et al.SlSGRL,a tomato SGR-like protein,promotes chlorophyll degradation downstream of the ABA signaling pathway[J].Plant Physiology and Biochemistry,2020,157:316-327. |
| [47] | XU J M, PAN C Y, LIN H,et al.A rice XANTHINE DEHYDROGENASE gene regulates leaf senescence and response to abiotic stresses[J].The Crop Journal,2022,10(2):310-322. |
| [48] | ZHANG J, LI H, HUANG X R,et al.STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability during heat-induced leaf senescence in perennial ryegrass[J].Plant,Cell & Environment,2022,45(5):1412-1427. |
| [49] | 茅远煜,李丽菁,李进超,等.结缕草ZjSGR基因在离体模拟逆境胁迫环境下的功能[J].草地学报,2022,30(6):1396-1402. |
| MAO Y Y, LI L J, LI J C,et al.Gene functional analysis of ZjSGR gene in Zoysia japonica leaves in response to vitro stress[J].Acta Agrestia Sinica,2022,30(6):1396-1402. | |
| [50] | LUO J, ABID M, ZHANG Y,et al.Genome-Wide identification of kiwifruit SGR family members and functional characterization of SGR2 protein for chlorophyll degradation[J].International Journal of Molecular Sciences,2023,24(3):1993. |
| [51] | BAI W Q, YANG Z Y, HUANG S X,et al.Breeding and molecular characterization of a new salt-tolerant wheat variety[J].aBIOTECH,2025,6:278-283. |
| [52] | 邵允,张蒙蒙,陈云,等.桃PpSGR基因功能鉴定及其对乙烯合成的调控[J].果树学报,2023,40(12):2513-2523. |
| SHAO Y, ZHANG M M, CHEN Y,et al.Function identification of PpSGR gene and its regulation of ethylene synthesis in peach[J].Journal of Fruit Science,2023,40(12):2513-2523. | |
| [53] | NAWAZ M, SUN J F, SHABBIR S,et al.A review of plants strategies to resist biotic and abiotic environmental stressors[J].Science of The Total Environment,2023,900:165832. |
| [54] | REN H Z, YU Y T, HUANG C,et al.Genome-wide identification and characterization of tea SGR family members reveal their potential roles in chlorophyll degradation and stress tolerance[J].Agronomy,2024,14(4):769. |
| [55] | MECEY C, HAUCK P, TRAPP M,et al.A critical role of STAYGREEN/Mendel’s I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis [J].Plant Physiology,2011,157(4):1965-1974. |
| [56] | XIE W Y, XUE X, WANG Y,et al.Natural mutation in Stay-Green(OsSGR) confers enhanced resistance to rice sheath blight through elevating cytokinin content[J].Plant Biotechnology Journal,2025,23(3):807-823. |
| [57] | ISHIGA Y, UPPALAPATI S R, GILL U S,et al.Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust[J].Scientific Reports,2015,5:13061. |
| [58] | CHANG H X, TAN R, HARTMAN G L,et al.Characterization of soybean STAY-GREEN genes in susceptibility to foliar chlorosis of sudden death syndrome[J].Plant Physiology,2019,180(2):711-717. |
| [59] | DONG S Y, LI C X, TIAN H J,et al.Natural variation in STAYGREEN contributes to low-temperature tolerance in cucumber[J].Journal of Integrative Plant Biology,2023,65(12):2552-2568. |
| [60] | GAO S, GAO J, ZHU X Y,et al.ABF2,ABF3,and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis [J].Molecular Plant,2016,9(9):1272-1285. |
| [61] | DELMAS F, SANKARANARAYANAN S, DEB S,et al.ABI3 controls embryo degreening through Mendel’s I locus[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(40):3888-3894. |
| [62] | WOO H R, KIM H J, LIM P O,et al.Leaf senescence:systems and dynamics aspects[J].Annual Review of Plant Biology,2019,70:347-376. |
| [63] | SAKURABA Y, JEONG J, KANG M Y,et al.Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis [J].Nature Communications,2014,5:4636. |
| [64] | ZHANG Y Q, LIU Z J, WANG X Y,et al.DELLA proteins negatively regulate dark-induced senescence and chlorophyll degradation in Arabidopsis through interaction with the transcription factor WRKY6[J].Plant Cell Reports,2018,37(7):981-992. |
| [65] | CLARK K J, PANG Z Q, TRINH J,et al.Sec-Delivered effector 1(SDE1) of ‘Candidatus liberibacter asiaticus’ promotes citrus huanglongbing[J].Molecular Plant-Microbe Interactions,2020,33(12):1394-1404. |
| [66] | ZHANG Y, GAO Y, WANG H L,et al. Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1-mediated ethylene biosynthesis[J].Molecular plant,2021,14(11):1901-1917. |
| [67] | ZHU X Y, CHEN J Y, XIE Z K,et al.Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes[J].The Plant Journal,2015,84(3):597-610. |
| [68] | LI Y, QU X R, YANG W J,et al.A fungal pathogen suppresses host leaf senescence to increase infection[J].Nature Communications,2025,16(1):2864. |
| [69] | CASTRO B, CITTERICO M, KIMURA S,et al.Stress-induced reactive oxygen species compartmentalization,perception and signaling[J].Nature Plants,2021,7(4):403-412. |
| [70] | ASADA K.Production and scavenging of reactive oxygen species in chloroplasts and their functions[J].Plant Physiology,2006,141(2):391-396. |
| [71] | SHI J N, WANG Y, WANG X Y,et al.Anthocyanin and chlorophyll accumulation by targeted metabolomic and transcriptomic analysis involved in pigment accumulation during fruit maturation in Liriope spicata [J].Journal of Plant Physiology,2025,311:154529. |
| [72] | ZOU S C, ZHUO M G, ABBAS F,et al.Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in litchi[J].Plant Physiology,2023,192(3):1913-1927. |
| [73] | MOURA J C M S, BONINE C A V,DE OLIVEIRA FERNANDES VIANA J,et al.Abiotic and biotic stresses and changes in the lignin content and composition in plants[J].Journal of Integrative Plant Biology,2010,52(4):360-376. |
| [74] | CESARINO I.Structural features and regulation of lignin deposited upon biotic and abiotic stresses[J].Current Opinion in Biotechnology,2019,56:209-214. |
| [75] | MA Q H.Lignin biosynthesis and its diversified roles in disease resistance[J].Genes,2024,15(3):295. |
| [76] | YANG H B, XIA L X, LI J S,et al. CsLAC4,regulated by CsmiR397a,confers drought tolerance to the tea plant by enhancing lignin biosynthesis[J].Stress Biology,2024,4(1):50. |
| [77] | KIM J Y, KIM J H, JANG Y H,et al.Transcriptome and metabolite profiling of tomato SGR-knockout null lines using the CRISPR/Cas9 system[J].International Journal of Molecular Sciences,2023,24(1):109. |
| [78] | WANG N, KONG X M, LUO M L,et al. SGR mutation in pak choi prolongs its shelf life by retarding chlorophyll degradation and maintaining membrane function[J].Postharvest Biology and Technology,2022,191:111986. |
| [1] | 郭迦南, 赵倚澎, 杨元植, 管清杰. 超氧化物歧化酶在植物响应干旱、盐碱和冷害中的作用[J]. 植物研究, 2024, 44(4): 481-490. |
| [2] | 刘亚洁, 安黎哲. 一氧化氮参与调控油菜素内酯增强高山离子芥悬浮细胞抗寒性[J]. 植物研究, 2024, 44(1): 118-131. |
| [3] | 杨洪, 王立丰, 代龙军, 郭冰冰. 死皮对橡胶树树皮线粒体超微结构及活性氧代谢的影响[J]. 植物研究, 2023, 43(1): 69-75. |
| [4] | 覃碧, 王肖肖, 杨玉双, 聂秋海, 陈秋惠, 刘实忠. 橡胶草TkAPC10基因的鉴定及其表达模式分析[J]. 植物研究, 2022, 42(5): 830-839. |
| [5] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 不同时期喷施NaHS对盐碱胁迫下裸燕麦H2S产生和活性氧代谢的影响[J]. 植物研究, 2022, 42(3): 455-465. |
| [6] | 刘建新, 欧晓彬, 王金成. 外源H2O2对盐碱混合胁迫下裸燕麦幼苗生长和抗性生理的影响[J]. 植物研究, 2019, 39(2): 181-191. |
| [7] | 张丽丽, 张富春. 短期盐胁迫下盐穗木的转录组分析[J]. 植物研究, 2018, 38(1): 91-99. |
| [8] | 刘建新1,2;王金成1,2;王瑞娟1,2;贾海燕1,2. 混合盐碱胁迫下裸燕麦的种子萌发和幼苗逆境生理特征[J]. 植物研究, 2016, 36(2): 224-231. |
| [9] | 赵玉琳1;杨桂燕1,2;于丽丽1;郭宇聪1;赵震1;高彩球1*. 甲基紫精胁迫下转TheIF1A基因烟草的活性氧代谢[J]. 植物研究, 2016, 36(1): 129-133. |
| [10] | 刘建新;王金成;王瑞娟;贾海燕. KCl对NaCl胁迫下燕麦幼苗活性氧代谢和渗透溶质积累的影响[J]. 植物研究, 2015, 35(2): 233-239. |
| [11] | 袁肖寒;顾成波*;邱德文;付丽楠;李旺;王秋雪;郭东杰;蔡曼. 新型真菌源激活蛋白诱导水稻抗病性及其生理机制[J]. 植物研究, 2013, 33(2): 220-224. |
| [12] | 尤佳;张菁;王文瑞;卢金;贾鹏翔;缪建顺;杨颖丽*. NaCl处理下黄花补血草幼苗生理特性的变化[J]. 植物研究, 2013, 33(1): 45-50. |
| [13] | 刘建新;王瑞娟;贾海燕;. 硝普钠缓解镧引起的黑麦草幼苗生长抑制和根系氧化损伤[J]. 植物研究, 2012, 32(6): 680-684. |
| [14] | 刘建新;王鑫;王瑞娟;李东波. 碱胁迫对黑麦草幼苗根系活性氧代谢和渗透溶质积累的影响[J]. 植物研究, 2011, 31(6): 674-679. |
| [15] | 刘建新;胡浩斌;王鑫. 外源NO对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响[J]. 植物研究, 2009, 29(3): 313-319. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||